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Abstract

/The purpose of this teseanh is to explore the methods used to parallelize NP-complete

problems and the degree of improvement that can be realized using a distributed parallel

processor to solve these combinatoric problems.

Common NP-complete problem characteristics such as a priori reductions, use of

partial-state information, and inhomogeneous searches are identified and studied. The set

3 covering problem (SCP) is implemented for this research because many applications such as

information retrieval, task scheduling, and VLSI expression simplification can be structured

as an SCP problem. In addition, its generic NP-complete common characteristics are well

documented and a parallel implementation has not been reported.

3 Parallel programming design techniques involve decomposing the problem and devel-

oping the parallel algorithms. The major components of a parallel solution are developed

in a four phase process. First, a meta-level design is accomplished using an appropriate

design language such as UNITY. Then, the UNITY design is transformed into an algorithm

3 and implementation specific to a distributed architecture. Finally, a complexity analysis

of the algorithm is performed.

I The a priori reductions are divide-and-conquer algorithms; whereas, the search for the

optimal set cover is accomplished with a branch-and-bound algorithm. The search utilizes

I a global best cost maintained at a central location for distri&,ution to all processors. Three

methods of load balancing are implemented and studied: coarse grain with static allocation

of the search space, fine grain with dynamic allocation, and dynamic load balancing.

A serial and three SCP parallel algorithms were implemented and executed on an

iPSC/2 computer. Tests on large SCP problems indicate limited speedup over the serial

program with the coarse grain version using static allocation and improved speedup with

the fine grain version using dynamic allocation. The use of dynamic load balancing further

improves the speedup and led to a super-linear speedup.

I
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Determination of Algorithm Parallelism in NP Complete Problems

for Distributed Architectures

L Introduction

1.1 Problem Statement

Many problems in Al, circuit simulation, communications, control, operations re-

I search, VLSI, and weapon-to-target assignment involve problems that reflect, in the worst

case, an enumeration of all possible paths to an optimal solution; i.e., a combinatoric

I explosion. The associated solution-time characteristics are thus bounded by exponential

functions. This family of problems is called "NP-complete" or "NP-hard" and all are trans-

i formable to each other in polynomial time. The purpose of this research is to explore the

degree of improvement that can be realized in general and specifically using a distributed

I parallel processor to solve NP-complete problems.

The following sections described the nature of NP-complete problems in Section 1.2

followed by the research objectives presented in Section 1.3 and the scope of the research in

Section 1.4. Since much of this work is software oriented, a brief explanation of applicable

software engineering practices is presented in Section 1.5 with an introduction to the rest

of the document contained in Section 1.6.

1.2 Background

Many of the combinatoric problems mentioned in Section 1.1 are NP-complete and

may be solved with search techniques developed to solve the following NP-complete prob-

lems (4, 25):

Set Covering Problem (SCP)

Assignment Problem

Hamiltonian Circuit Problem

1-1
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Traveling Salesman Problem

0/1 Knapsack Problem

The SCP is generally applicable to many different problems including airline and

assembly line scheduling, design of computer systems, railroad-crew scheduling, and polit-

ical districting (18:591) (56:94) (7:1152). Furthermore, since the SCP is an NP-complete

problem, it can be used to solve other NP-complete problems such as the assignment and

graph coloring problems. The SCP is briefly described in Chapter II and a detailed ex-

planation is available in Appendix E along with descriptions of other four NP-complete

problems. These examples are typical of NP-complete problems and serial solutions to

these problems are well known and documented for specific cases as well as for the general

case (18, 4, 26, 17, 13, 29, 5). Furthermore, some work has been performed involving

parallel solutions (56, 48, 23, 46, 50, 25). Of the previous examples, emphasis is placed on

* the SCP because of its general applicability to many different problems.

Combinatoric issues are becoming more visible to software developers due to the

expanding complexity of problems. Problems such as optimal resource scheduling and

robot arm manipulation in three dimensional space are known to be at least NP-complete

and require a combinatoric search for an optimal solution (19, 24). A resource scheduling

problem receiving recent attention is the problem of finding the optimal solution to the

assignment of weapons to targets. A timely solution to this assignment problem is one

of the many problems facing the construction of a global defense system for the Strategic

Defense Initiative (SDI) (2, 3).

Consider the assignment of w weapons to t targets where w < t. It is easy to show

by induction that there are wt possible assignments of weapons to targets. If costs (say

based on threat, location of impact, etc.) are associated with particular weapon/target

assignments, the optimal assignment can only be found by checking either implicitly or

explicitly every possible assignment. Consider the best serial algorithm available to solve

this problem. If only two weapons are used, 2t possible assignments must be checked. If

each assignment is checked in one microsecond, the problem requires 2' microseconds to

solve a problem of size t. Consider the optimal assignment of only 60 targets. If every

possible assignment is checked, this problem requires 260 microseconds or 366 centuries to

I 1-2
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find the optimal assignment of weapons to targets (56:93). Clearly, given a large number

of weapons and targets, this assignment problem is not computable within a reasonable

amount of time since the time required to solve the problem in this manner grows expo-

nentially.

Such exponential explosions in the solution time are indicative of NP-complete prob-

lems; therefore, software designers must consider alternative algorithms which solve the

I problem but avoid a complete enumeration of the problem space. Three such alternatives

are the use of polynomial-time algorithms which yield an optimal solution, the use of prob-

abilistic algorithms which yield an acceptable solution, or the use of more processing power

applied to the optimal search.

* The first alternative is to develop an algorithm which produces an optimal solution

to NP-complete problems in polynomial-time (e.g., O(nc)). Since the example assign-

ment problem is NP-complete, it is sufficient to say that if there exists any NP-complete

problem possessing a polynomial-time algorithm, then this assignment problem can also

be solved in polynomial time (29:502). Much work has been devoted to finding such an

algorithm for NP-complete problems. Since a polynomial-time algorithm has not been

found, it is unlikely that NP-complete problems can be solved in polynomial time. Hence,

a polynomial-time algorithm is not available to solve this assignment problem (13:337).

A second alternative is to use a probabilistic algorithm which yields an acceptable

versus an optimal solution. Probabilistic algorithms such as Monte Carlo, numerical,

Sherwood, and Las Vegas are available to solve NP-complete problems; however, such

algorithms are not guaranteed to return an optimal solution (13:223). Since this thesis

effort is concerned with finding the optimal solution, probabilistic algorithms are not be

considered except where they might improve the optimal search procedure.

I The last alternative, the substitution of more processing power, is the basis of this

research; specifically, the use of many processors (multiprocessors) working simultaneously

toward a solution to a common problem (parallel processing). Using multiple processors

to solve an NP-complete problem does not change the combinatoric nature of the problem;

however, it generally increases the size of the solvable problem (42:4).

I
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1.3 Research Objective

The objective of this research is to study the degree to which NP-complete problems

can be parallelized. Key to this study are the identification of a set of common charac-

teristics possessed by all NP-complete problems, the selection of appropriate performance

metrics for comparing the various algorithms, and selection of problems or algorithms

which are good representative examples of this broad class of problems. Briefly, the term

combinatoric search implies that all the algorithms must search a potentially explosive

problem space. To improve the efficiency of the search, many search techniques employ

various preprocessing methods to order or reduce the input data and bounding computa-

tions to prune the search tree. The preprocessing may take the form of a simple sort of

the input data or may utilize an a priori reduction algorithm which removes redundant

information. By removing redundant information, the a priori reductions decrease the size

of the input problem space which leads to a decrease in the size of the search graph and a

corresponding decrease in the solution time. These and other common characteristics are

described more fully in the following chapters.

To study the parallelization of NP-complete problems requires the selection of a

representative problem which is proven NP-complete. The SCP was chosen for this research

because many applications such as graph coloring, information retrieval, task scheduling,

and VLSI logic expression simplification can easily be structured as an SCP problem.

In addition, its generic NP-complete common characteristics are well documented, it has

been studied in the general case for serial algorithms (18, 7), and a parallel implementation

has not been reported. A variety of techniques have been used to solve the SCP (divide-

and-conquer, branch-and-bound, dynamic programming, etc.); hence, serial algorithms are

available in many forms.I
1.4 Scope

This thesis effort develops and implements a parallel algorithm to obtain an optimal

solution for the general SCP. Since this is an optimal search, probabilistic algorithms

(for example: numerical, Monte Carlo, Las Vegas, Sherwood) are not considered nor im-

plemented. Probabilistic algorithms for solving the SCP are especially useful when the

I 1-4
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problem is very large or the amount of time available to compute the answer is limited.

However, such algorithms are not guaranteed to produce the optimum answer or even an

answer. It is the intent of this research to address, to the maximum extent possible, the

following goals:

1. Determine the division of control and data between the distributed processors such

that maximum performance is realized. Maximum performance relates to the execu-

* tion time of the parallel algorithms compared to those of a similar serial algorithm.

2. Develop appropriate performance metrics for measuring the speed and efficiency of

I the parallel programs.

* 3. Investigate the effects of static and dynamic load balancing on program performance.

4. Investigate the amount of communication versus computation occurring in the algo-

*- rithms.

Since the design of parallel algorithms is such a diverse field, many items could be addedI -to this list; however, the project must conclude within a specified time period. Hence, this

list is complete with respect to the purpose of this research; namely, to study methods of

parallelizing NP-complete problems and to implement a parallel algorithm for a suitable

- NP-complete problem.

- 1.5 Software Engineering Practice

Much of this effort focuses on the design and development of a parallel solution to the

SCP which is implemented in software on a parallel computer; hence, a structured approach

is required in keeping with good software engineering practices. Therefore, the general data

and control structures are developed first using top-down design and a structured design

syntax. The general data and control structures are then mapped to a parallel architecture.

Various structured and unstructured methods and tools are available to assist soft-

ware engineers in their design task:

1-5



1. Pseudo-English

2. Structured Analysis and Design Tool (SADT) (49:192)

3. Unbounded Nondeterministic Iterative Transformations (UNITY) (16:6)

4. Structure Charts

5. Abstract Data Types (ADTs) (30:7)

For this research, a structured design method enabling the expression of parallel

and serial operations is required. From the above list, UNITY is specifically designed

for parallel programming tasks and structure charts are an easily understood method of

representing communication.

UNITY is a design syntax developed by Chandy and Misra for use in developing par-3 allel programs. It is their attempt to incorporate a formal syntax into the parallel program

design process and is similar, in many respects, to the Hoare's (28) method of designing

3 concurrent sequential processes. Both methods are based on predicato calculus and struc-

tured design methods. Further details of UNITY as well as other parallel algorithm design

3 methods are left to Section 2.5.3. Other authors such as Jamieson (38), Carriero (15),

Wah (56), and Fox (25) describe similar though less formal design methods. Each author's

* particular design methods undoubtedly influenced the design of the algorithms developed

for this research; however, UNITY programs are presented since they are more formal.

* The valuable insight gained from the UNITY program design process assists in the

development of pseudo-code algorithms for the parallel SCP programs. The pseudo-code

I algorithms are developed in Chapters III and IV and include references to the structure

charts and ADTs contained in Appendices A and B.

The control and data structures of the SCP are structured so that the algorithms are

easily changed to investigate different methods of load balancing. A serial version of the

SCP is developed first followed by three parallel versions. The first parallel implementation

is the simplest, utilizing basic methods to distribute the data among all the processors. The

second implementation is only slightly more complicated and is actually a modification of

the first. The second implementation distributes the initial data dynamically between the

processors. The third and final parallel implementation is the most complex and efficient.

1-6



It adds a dynamic load balancing capability to the search process. As the processors

complete their individual search, they poll other processors in an attempt to share the

remaining work. Thus, all three parallel implementations are built on previous solutions

* to the problem.

Since many parts of the parallel SCP solution involve serial algorithms, these al-

gorithms are developed and executed on a personal computer using Borland's Turbo C

programming environment (11, 12). Borland's programming environment integrates an

editor, compiler, and symbolic debugger into one cohesive package, thus permitting quick

3 development and debugging of software. Although Turbo C operates on a serial computer,

the parallel programs are compiled and linked with Turbo C to eliminate the obvious

Scompile-time errors. These parallel programs are not executed on the personal computer

because of the large amount of code needed to simulate the parallel communications.

11.6 Summary

3 To find the optimum solution to an NP-complete problem requires exponential time

in the worst case. Hence, large problems quickly become incomputable within a reasonable

amount of time. The objective of this research is to investigate the amount of parallelism

inherent in these "hard" problems. The SCP is a good representative of the class of NP-

U complete search problems since many NP-complete problems can be structured as an SCP

problem and it incorporates many of the methods typically used in combinatoric searches;

namely, a branch-and-bound search, dynamic programming, easily computed lower bound,

and polynomial-time computable a priori reductions.

To limit the physical size of this document, assumptions are made concerning the

reader's breadth of knowledge. Subjects such as NP-completeness, parallel architectures,

and parallel algorithms are presented but not in detail. Bibliographic entries are given to

more complete references. No assumption is made concerning the reader's knowledge of

the SCP; hence, a detailed explanation is available in Appendix E along with examples

illustrating its application to other NP-complete problems and 'real-world' applications.

The next chapter, Chapter II, is the background and requirements review. Many
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hours were spent researching the various aspects of NP-complete problems, search tech-

niques and algorithms, parallel architectures, and the SCP; hence, Chapter II is somewhat

lengthy. Readers familiar with basic search techniques should probably skip Section 2.4.

Sections 2.5 and 2.6 should be read by most readers as they describe parallel architectures,

parallel algorithms, and parallel algorithm design for NP-complete problems. Section 2.3

is a brief description of the SCP and is supplemented by Section E.6 in Appendix E.

The design of the parallel algorithms is conducted in two stages. Chapter III describes

the methodology and preliminary design used to solve this complex problem; whereas,

Chapter IV is a detailed design of the programs for the SCP. Much of Chapter IV is

mainly dedicated to the construction of UNITY representations of the SCP and verbal

descriptions of the algorithms. On the other hand, Chapter IV presents many detailed

pseudo-code algorithms for the SCP routines. Chapter V consists of a test plan to test the

SCP algorithms and explains how to read the results obtained from parallelizing the SCP.

Chapter VI contains an interpretation of a the results, a section on lessons learned, and a

list of recommendations for further research.

I-
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3 I. Background & Requirements

2.1 Introduction

An understanding of NP-completeness, search techniques and algorithms, parallel

architectures, parallel software design, and the SCP are essential to the completion of

this research. As such, this chapter is divided into five main sections: NP-completeness,

the SCP, generic search techniques, parallel architectures, and parallel software design.

Each subject area has been extensively studied by other authors and many books and

articles are available. It is not the intent of this chapter to conduct an exhaustive review

of each subject; rather, this chapter summarizes and expands on those areas which are

most beneficial to the focus of this research. Since the terminology is not well defined,

this thesis takes the view of Fox and others (25:477) and treats concurrent and parallel as

i synonymous terms.

The next section, Section 2.2, is an introduction to the theory of NP-completeness

3 followed by a brief description of the NP-complete problem to be parallelized in this re-

search, the SCP. Section 2.4 is a review of common, generic search techniques used to

3 solve many NP-complete problems. Parallel architectures and algorithms are discussed in

Section 2.5 and Section 2.6 integrates the information in the previous sections to discuss

3 parallel algorithm design for NP-complete problems.

3 2.2 NP-Complete Problems

"It is an unexplained phenomenon that for many of the problems we know and

3 study, the best algorithms for their solution have computing times which cluster into two

groups" (29:501-502). The solution time for the first group of problems is bounded by a

3 polynomial-time function. For example, sorting - O(n log n), binary searching - O(log n),

and matrix multiplication - O(n 2 _1s ). The second group of problems are those whose best

3 known algorithms are nonpolynomial. For example, the TSP - O(n 2 2n), 0/1 knapsack

problem - O(2"v/), and the SCP - 0(2') (29:501-502). The thrust of this master's thesis

3 is of course the second class. More specifically, a collection of problems in the second class

termed nondeterministic polynomially-complete (NP-complete).

2
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All NP-complete problems have two distinguishing characteristics. First, an NP-

complete problem must be in the class .gP. Secondly, any NP-complete problem must be

transformable to all other NP-complete problems in polynomial time and vice-versa (4:373).

Problems in AKP consist of all problems which can be solved in polynomial time on a

nondeterministic turing machine (NDTM). An NDTM can solve an unbounded number of

problems in parallel; therefore, it can solve both polynomial-time and nonpolynomial-time

algorithms in polynomial time (26:12). Clearly, such a machine does not exist; hence,

problems in .l/P whose best know algorithms are nonpolynomial can not be solved in

polynomial time.

The second characteristic of NP-complete problems is that they must be trans-

3 formable to each other in polynomial time. Hence, given an NP-complete problem that

can be solved in polynomial time, any NP-complete problem can be solved in polynomial

3 time (29:502). This last statement has profound implications! There are many problems

whose best known algorithms are bounded by exponential functions. Moreover, many of

these same problems have been proven to be NP-complete; that is, they are in KfP and

are transformable to each other in polynomial-time. The problem is that no one has yet

3 proven that any of these NP-complete problems can not be solved in polynomial time.

However, given the current algorithms, it is simple to show that large instances of these

3 problems are not solvable by any computer since the time required to compute the solution

grows exponentially (13:337).

2.3 The Set Covering Problem

3 The set covering problem (SCP) is one of a large class of NP-complete problems 1

extensively studied in the late 1960's and early 1970's in connection with operational

3 research problems. The SCP is the problem of finding the minimum number of columns

in a 0-1 matrix2 such that all rows of the matrix are covered by at least one element from

Sany column and the cost associated with the covering columns is optimal (minimum or

'See Aho (4:392) for a proof of the SCP's NP-completeness2A 0-1 matrix is a rectangular matrix in which a covered row is denoted by a '1' in the covering columns.
If the rows in the matrix represent the vertices of a graph, the existence of an arc between any two vertices
is denoted by a '1' in the column of the matrix.

2
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maximum) (17:39). As an example, Figure 2.1 shows a 0-1 matrix in which the rows are

covered by several different combinations of columns. Columns 0, 1, 2, 3, and 4 form a

cover with a total cost of 27. The optimal cover is columns 0, 3, and 4 with a cost of 15.

Sets
S0 1 2 3 4 5 6 7

0 1 1 1 0 0 1 0 1
1 1 0 1 0 0 1 0 1

Vertices 2 0 0 0 1 0 0 0 0
3 0 1 0 0 1 0 1 1
4 0 0 0 0 1 1 1 0

S5 1 11 0 0 0 0 1 -0

4 7 5 8 3 2 6 5

SFigure 2.1. 0-1 Matrix for a Set Covering Problem (17:54)

I

As stated previously, the SCP has applications in solving many 'real-world' and NP-

I complete problems. Examples of which are presented in Section E.6.2. Since much of this

research revolves around the SCP the reader is encouraged to at least scan the detailed

I explanation of the SCP presented in Appendix E. The process of solving the SCP, or any

other NP-complete problem, typically requires an optimal search of a problem space. That

I is, a search of the problem space so that some value is minimized (or maximized) subject to

some constraints. In the SCP, the cost of the cover is minimized subject to the constraint

I that all rows must be covered by elements in at least one column.

I 2.4 Search Techniques

Numerous search techniques have been developed and each technique has countless

I variations which depend on the specific problem to be solved. The following sections

explain six common generic search techniques: the greedy method, a brute-force search,

I divide-and-conquer, dynamic programming, backtracking, and branch- and-bound.

I F..1 Greedy Method Consider the search for a cover in the 0-1 matrix of Fig-

ure 2.1 based strictly on a greedy method. The greer ieod tchooses, at each step in the
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search, the best column for inclusion in the cover without considering the future. Columns

included in the cover are never removed and those excluded from the cover are never recon-

sidered (13:80). The selection criteria for the best column varies depending on the problem.

For instance, it may be the lowest (or highest) cost column or the column with the most

elements (l's). Such a search is not guaranteed to be optimal but it is simple and usually

quite fast. For the example matrix, a search based on the greedy method might choose

columns {0, 1, 2, 3, 4} since they comprise an extremely simple cover. In this case, best is

I defined as 'the next column'.

3 2.4.2 Brute-force Method One of the most straight forward approaches to solving

any search problem is the brute-force approach. "Suppose mi is the size of a set Si. Then3 there are m = M 1 , M 2 ,..., mn n-tuples which are possible candidates for satisfying the

function P. The brute force approach would be to form all the n-tuples and evaluate each3 one with P, saving those which yield the optimum" (29:323-324). For example, let mi =

3. The complete list of sets for Si is {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. The1 brute force method checks every possible combination of sets for a solution. Hence, mi

= (3, 4, 5, or 6) would require that 7, 15, 31, and 63 combinations of sets be examined.

3 Clearly, the number of sets to check increases exponentially with ini.

The most common brute force methods are the depth-first search and the breadth-3 first search. Both are best explained with the aid of a tree diagram; hence, in the following

sections, an explanation of the search is first given followed by an example. The examples

1 are based on the search for a cover in the matrix of Figure 2.1. The nodes of the tree

represent the columns of the matrix and, when combined, form a cover of the rows.

2.4.2.1 Depth-first Search This generic search vertically expands a search

tree. Consider an undirected graph composed of N = {n,n2,...,np} nodes and con-

necting links where the semantic representation of the nodes and links is determined by

the problem to be solved. For instance, the nodes might represent the processes in an

operating system and the links might represent dependencies between the processes. Any

two nodes of the graph are termed adjacent if they share a common link. "To carry out

a depth-first traversal of the graph, choose any node -y E N as the starting point. Mark
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this node to show that it has been visited. Next, if there is a node adjacent to -y that has

not yet been visited, choose this node as a new starting point" and repeat the search pro-

cess (13:171). For an optimal search, any combination of nodes that represents a feasible

solution to the problem is compared against a previously obtained best feasible solution

with the better solution retained for future comparisons. The search continues until all

nodes have been visited and all solutions have been found. By completely exploring one

subtree before progressing to the next, this search technique quickly finds an initial solu-

tion; however, it must still expand every node in the search tree to ensure that the optimal

solution is found (23:1500).

Consider a depth-first search of the 0-1 matrix given in Figure 2.1. A small portion

of the search tree is shown in Figure 2.2. The search first chooses column 0 to add to the

solution. Since column 0 is not a cover, it is not retained. It then combines the following

columns {0,1}, {0,1,2}, {0,1,2,3}, {0,1,2,3,4}. The last combination is saved since it covers

all the rows. The search continues to enumerate the rest of the combinations: {0,1,2,3,4,5},

f{0,1,2,3,4,5,6}, {0,1,2,3,4,5,6,7}. Obviously, these combinations are no better than the first

cover found; therefore, they are not retained. Since the depth-first search can go no deeper

down this branch, it retraces its steps until it can go forward again. The search continues

with {0,1,2,3,4,5,7}, {0,1,2,3,4,6}, and so on until all possible combinations of columns

have been formed. As stated, an initial cover is quickly found and then used to compare

against future covers and each branch is completely searched before proceeding onto the

next branch. It is quite obvious that this search is effective but could be much more

efficient. Methods to improve the efficiency are discussed in future sections.

2.4.2.2 Breadth-first Search In contrast to the depth-first search, this generic

search expands the search tree horizontally. "When a breadth-first search arrives at some

node -y, it first visits all the neighbors of y" before visiting any of the nodes adjacent to

-f (13:182). In other words, each level of the tree is expanded before proceeding to the next

level. The search is just as exhaustive as the depth-first search and the optimal solution is

only found when all nodes have been expanded.

Figure 2.3 shows a portion of the breadth-first expansion of the 0-1 matrix. It first
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visits nodes 0, 1, 2, 3, 4, 5, 6, and 7 in that order and then returns to node 0. Node 0

is expanded one additional level as are nodes 1, 2, 3, 4, 5, and 6 in order. Node 7 is not

expanded any further since it is the last node in the search. As with the depth-first search,

it easy to see that this generic search method is effective but far from efficient.

2.4.3 Divide-and-Conquer Divide-and-conquer is a top-down approach to search-

ing. The basic premise is to continually divide the problem into smaller subproblems until,

at some point, the subproblems can be efficiently solved by a simpler method. Once the sub-

problems are solved, they are combined until the original problem has been solved (13:142).

* The efficiency of a divide-and-conquer approach depends on the method used to solve the

subproblems and the method by which the subproblems are recombined (13:105). A bi-

nary search is a simple application of the divide-and-conquer approach to a problem solu-

tion (13:109). Given a sorted list, the list is continually divided in half until the algorithm

* converges upon the item or determines the item is not present.

2.4.4 Dynamic Programming "An algorithm design method that can be used when

the solution to a problem may be viewed as the result of a sequence of decisions" (29:198).

3 The underlying goal of dynamic programming is to avoid calculating the same thing twice

by making explicit appeal to the Principle of Optimality (13:142). "This principle states

3 that an optimal sequence of decisions has the property that whatever the initial state and

decision are, the remaining decisions must constitute an optimal decision sequence with

3 regard to the state resulting from the first decision" (29:199). However, not all problems

conform to the Principle of Optimality. But if the principle applies, the number of decisions

3 are reduced since the solution to previous optimal decisions is retained and used in future

decisions and suboptimal decisions are not considered.

3 The Principle of Optimality is usually formulated as a recurrence relation using either

a forward or backward approach:I
Let ZX2, ... , x,9 be the variables for which a sequence of decisions has to

be made. In the forward approach, the formulation for decision xi is made in
terms of optimal decision sequences for x(j+l),.. ., xn. In the backward approach
the formulation for decision xi is in terms of optimal decision sequences for
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i X1... IX(i-1). Thus, in the forward approach formulation we "look" ahead on
the decision sequence x1 ,X2, ... ,i X. In the backward formulation we "look"
backwards on the decision sequence x1 , X2,... , xn. (29:201)

I Many examples of dynamic programming are given in the literature (13, 29, 45, 9)

and most are quite lengthy; hence, no examples are presented here. However, a dynamic

programming algorithm is employed to calculate a lower bound for the SCP and is presented

in Section E.6.7.

2.4.5 Backtracking Backtracking algorithms are a variation on the basic tree search

algorithm and carry out a systematic search of the problem space (13:185). "In order to

apply the backtracking method, the desired solution must be expressible as an n-tuple

3 (X 1 , X 2 ,..., Xn) where the Xi are chosen from some finite set Si" (29:323). As each Xi is

added to the n-tuple, the n-tuple is checked to see if it represents a solution to the problem.

3 At some point during the expansion, it may be desirable to backup to a previous state in

the search. The n-tuple, which represents the current state of the search, facilitates an

3 easy recall of the previous states.

Once again, consider a search of the matrix of Figure 2.1. An example backtracking

search is shown in Figure 2.4. The search starts as a depth-first search until it reaches

the first cover {0,1,2,3,4}. At this point, the search backtracks since a better solution can

not be found down this path. The algorithm backtracks to a previous state and proceeds

forward expanding adjacent nodes. Notice, however, that the algorithm does not routinely

backtrack to the top of the search tree; rather, it searches subtrees before backtracking to

other subtrees. New covers are compared against the previous cover and the better cover

is kept for future comparisons. It is easy to see how this search is closely related to the

depth-first search but is more efficient in the vast majority of problems since it does not

enumerate all possible solutions as was the case with the depth-first traversal.

3~2.4.6 Branch-and-Bound The solution to NP-complete problems presented in this

thesis all require a search of the state space and, as previously stated, the state space of

3 an NP-complete problem increases exponentially as the problem size increases. Clearly, an

unguided search of such a state space may continue indefinitely. The branch-and-bound

I
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search is the most general of several guided, optimal searches (1:1492). It is a variation on

backtracking in which the amount of searching is pruned or bounded through the use of a

bounding function. At each state of the search, the cost of the current state is compared

to the cost of the best solution obtained thus far. If the current state's cost is worse

than the best solution obtained, the algorithm backtracks since any additional states in

this branch of the search tree can only lead to a solution worse than the solution already

obtained (13:199).

A "branch-and-bound algorithm consists of four major components: a selection pro-

cedure, a branching procedure, an elimination procedure, and a termination test proce-

dure" (1:1494). The selection procedure selects the next state of the search to be included

based on some heuristic (criteria) function such as a depth-first or breadth-first traver-

sal. The branching procedure examines the next state chosen by the selection procedure

and further divides the state space into smaller subproblems. The elimination procedure

examines the subproblems developed by the branching procedure and eliminates those

subproblems that can not possibly lead to an optimal procedure. And finally, the termina-

tion test procedure examines the subproblems produced by the branching procedure and

eliminates those subproblems that do not lead to a feasible solution (1:1494).

It becomes apparent, with some thought, that many guided searches described in

the literature (A*, AO*, alpha-beta) may be described in terms of a branch-and-bound

search (47). Each of these guided search algorithms includes the four major components

with some minor modification added to improve the search for a specific type of prob-

lem (1:1493).

2.4.7 Improvements to Optimal Search Techniques Except for the greedy method,

all search techniques presented provide a basic structure for solving an optimal search

problem. In many instances, the efficiency of the search techniques may be improved

through the use of precomputation or preconditioning in the form of a priori reductions

and selective bounding functions (13:205).
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2.4.7.1 Reduction Methods In many problems, it is possible to reduce the

amount of searching required with problem specific reduction techniques or precomputation

to reduce the dimensions of the original graph or tree (13:211). One such reduction is to

remove any states which are included in every branch of the search tree. For example,

in the problem of Figure 2.4, the element corresponding to node 3 is in every solution

path. Therefore, it is not necessary to include this node in every search path. Rather, the

node is removed from from the input problem and retained for later insertion into the final

solution. Details of more reductions are presented in Section E.6.4.

2.4.7.2 Dominance Testing Dominance testing is a precomputation method

which may decrease the size of the search tree by comparing the current state of the search

to previously saved states. For instance, if the current state is a subset of a previous

state and the current state's cost is greater than or equal to the previous state's, then the

algorithm can backtrack. This technique requires a list of previous states be maintained

in some suitably arranged manner (list) to allow an efficient comparison to the current

state. If desired, all previous states may be saved; in which case, this approach resembles

a breadth-first search of the problem space. As with most engineering problems, some

tradeoff must be made between the number of stored previous state-s and the computation

time required to check for dominance (18:594-595). A good example of dominance testing,

as it relates to the SCP, is presented in Section E.6.6.

2.4.7.3 Lower Bound Computation In addition to dominance testing, the

computation of a lower bound is sometimes useful in bounding the search. A lower bound

is the lowest possible cost down a branch of the search tree. Whether or not the lower

bound can actually be obtained is irrelevant. What does matter is that if the current cost

3 plus the lower bound exceeds the best cost obtained thus far, the algorithm backtracks. As

the computation of the lower bound becomes more accurate, more branches of the search

tree are pruned. In the best case, the lower bound is exact and the search proceeds down

the optimum path without backtracking. It is natural to assume that the precision of the

* lower bound computation is inversely proportional to the amount of computation time

required to compute the lower bound. That is, a precise lower bound may require a long

I
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time to compute. Therefore, a suitable lower bound computation is one in which the time

required to compute the bound does not adversely impact the overall search time (13:200-

202) (18:595). A dynamic programming algorithm for computing the SCP lower bound is

I presented in Section E.6.7.

In summary, many of the preceding search techniques are used in some form or

another to solve NP-complete problems; hence, derivatives of these techniques are used in

this research. The objective of this research is to investigate and develop parallel search

algorithms for solving NP-complete problems on parallel architectures. Before any of the

above search techniques are parallelized, it is necessary to acquaint the reader with the

characteristics of parallel architectures and parallel algorithm design. The next section

discusses parallel architectures; specifically, the characteristics of parallel hardware and

software.

I 2.5 Parallel Architectures

"The driving force behind parallel architecture design has been the need to execute

time critical or large scale applications as fast as possible" (55:165). Common methods

used to achieve improved computer performance are better algorithms, code optimization,

improved serial architectures, and faster technology (42:1352). With the technology of

modern computers nearing the "limits set by the speed of light and quantum physics effects,

there is general agreement that the only route to significantly increased performance is

through concurrent computation - the use of many computers together to solve the same

problem" (25:2). An understanding of parallel architectures and perhaps more importantly,

the design of parallel programs, it required to design and implement the parallel programs

for this research. The following sections are designed to do just this; namely, qcquaint the

reader with parallel computers and parallel algorithm design. First, three methods used

to classify parallel computers is presented in the next section, Section 2.5.1, followed by

a description of a cube-connected architecture in Section 2.5.2 and the characteristics of

parallel program design in Section 2.5.3.

I
I
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2.5.1 General Architecture There exist many methods to classify computers in gen-

eral and parallel computers in particular. In 1966, Flynn (24) presented a simple classifi-

cation scheme for computers based on their instruction and data streams as either SISD,

SIMD, MISD, or MIMD (Single or Multiple Instruction stream, Single or Multiple Data

stream). An SISD computer is essentially a Von Neumann, sequential computer. An

MIMD computer is typically composed of several SISD computers (independent proces-

sors) connected by an interconnection network with each processor capable of executing

I its own independent program.

Another method used to classify parallel computers is to consider the interconnec-

tion network. In many parallel programs, the independent processors must communicate

control/data information to neighboring processors. This is accomplished via the inter-

connection network. Popular interconnection networks are the common bus, the shuffle-

exchange, the two-dimensional mesh, and the cube as shown in Figure 2.5 (25:23). Each

Bus Architecture Shuffle Exchange Network

-8 node Q nef[work MMRE

CPU CPU ... CPU MEMRIE

option W2 - 2 switch

m m memories CPU

I Two Dimensional Mesh Topology Cube Network

Node is complete
computer including
memory.

I Figure 2.5. Popular Interconnection Networks (25:23)

network has characteristics which make it appealing to a particular class of problems;

hence, the selection of an efficient parallel architecture is largely driven by the application.

I
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The cube network is of primary importance to this thesis and is discusscd in the following

section. A good description of the other networks is available in Stone (55) and Hwang

and Briggs (31).

Structure of the memory is also used to classify parallel computers. For instance,

shared memory architectures consist of a large global memory. Each processor uses this

memory to access common data and to pass information to other processors. Such an ar-

chitecture is referred to as tightly coupled. Local memory or a loosely coupled architecture

is composed of processors with their own private memory. In such a system, data and

information is passed between processors via the interconnection network (14:13). In con-

trast to an architecture based on a global memory, the cube network is a loosely coupled

* architecture.

2.5.2 Cube-connected Architecture A cube-connected architecture derives its name

I from the interconnection pattern associated with the individual processors as illustrated

in Figure 2.6 which depicts a cube of dimension 3. This architecture consists of n 2 k

001 Oil)01I/
000 ((010

1 111

11
Figure 2.6. Three Dimensional Cube Network

processors labeled 0, 1,..., 2 k - 1 where k = 3 in the figure. If the node labels are repre-

sented in binary format, neighboring or adjacent nodes differ by exactly one bit position

in their labels (50:28). As one might expect, the most efficient communications occur be-

tween adjacent nodes since the communications are not required to traverse intermediate
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nodes. For example, node 000 can only communicate with node 111 after connecting with

the intermediate nodes 010 and 011 or some other similar combination of nodes.

As stated previously, each parallel computer network or architecture has character-

istics which make it suitable for particular applications. The cube network is desirable for

tree search type applications since the nodes of the network are easily configured as the

nodes of a binary tree. Hence, a cube should work well on search algorithms such as those

needed to search NP-complete problems.

2.5.3 Characteristics of Parallel Algorithms Some authors argue that the devel-

opment of parallel algorithms is the most challenging aspect of parallel computing since

many factors jointly influence a parallel design and the science of parallel computing is still

relatively young (25:25). The literature seems to reflect that the following are the most

important issues associated with the design of parallel algorithms:

1. Discovering the problem's inherent parallelism (14:19). Many problems exhibit par-

allelism in their control structure with the presence of nested for loops or separate

processes. As an example, the inner most for loops of a program may be partitioned

to separate processors to work on separate parts of the data. The outer most for

loop then controls the number of times each processor executes its for loop. Con-

sider the simple task of computing the row sum of all the rows of a matrix. A parallel

version of the algorithm assigns each row to one of N processors which compute the

sum for the individual rows as shown below. Following termination, each processor

contains the sum of one row.

for i = 1 to N
A[i, 0] = 0.0

end for

for i = 1 to N
parbegin

for j = 1 to N
A[j, 0] = A[j, i] + A[j, i]

end for
end parbegin

end for
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2. Decomposing the data to the appropriate grain size. Grain size refers to the size of

the problem allocated to a processor. The proper grain size is one which allows the

parallel computer to reach its optimal performance (56:95). As expected, there is

a trade-off: designing an application using many small programs (small grain) in-

creases the amount of parallelism possible at the cost of increased communications

overhead; whereas, large grain programs have less communication and more com-

putation (42:422). Clearly, the best grain size depends not only on the application

(i.e., sorting, searching) but also on the problem (i.e., sorting partially ordered sets).

Hence, it is nearly impossible to find the optimal grain size and many parallel de-

signs simply settle for the grain size that suits the algorithm design or that produces

satisfactory results.

3. Mapping and scheduling of tasks or problems. The mapping problem is the problem of

making a static assignment of processes or problems to processors (38:304). Whereas,

the scheduling or processor allocation problem "is one of assigning the tasks of a paral-

lel program among the processors or a parallel program in a manner which minimizes

interprocessor communication costs while simultaneously maintaining computational

load-balance among the processors" and is known to be NP-complete; hence, sub-

optimal solutions are generally sought (22:21).

4. Balancing the load (static or dynamic) (55:166). Static load balancing distributes

the data among the processors before computation starts; whereas, dynamic load

balancing distributes the data as the processes are executing (25:8).

5. "Relation of the problem topology (architecture) to that of the problem" (25:2-3).

This characteristic was presented briefly in Section 2.5.1. Certain problems exhibit

information structures that can be implemented in the parallel computer's intercon-

3 nection network. For instance, the cube network works efficiently for many search

algorithms since these algorithms use a tree structure to implement the search. On

the other hand, the mesh network resembles a two-dimensional grid and fits easily

into many flow problems such as modeling heat flow.

I
I
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No doubt there are more issues associated with the design of parallel algorithms. This list

is simply a representative sample.

The ultimate goal in any parallel algorithm is to obtain a speedup proportional to

the number of processors over the best serial algorithm (56:93). In fact, such a measure is

* a key performance indicator given by the following equation:

tSerial
S(N)_ =t(N)

where S(N) represents the speedup, te.ial is the execution time of the serial program, and

t(N) is the execution time of the parallel algorithm on N processors. As simple as this

measurement seems, it is not always a reliable indicator of an algorithm's performance.

In many serial algorithms, computational analysis has derived an acceptable lower bound

(e.g., n log(n) for a sort (29:350)). The same statement does not hold for most parallel

algorithms. The analysis of parallel algorithms is much more complex "since many factors

jointly determine the system performance and the modification of some factors affects

many others" (42:421). A number of possible parameters to evaluate include (53):

* Absolute execution time.

* Local and global memory requirements.

* Effect of varying granularity on message traffic.

e Synchronization between processes or processors.

e Contention for global data.

* Idle time - time spent by a processor working on the problem versus the time spent

trying to retrieve a problem.

Methods of analysis for parallel algorithms vary, but a common pattern seems to

hold. The analyst first specifies the number of processors in the parallel computer (e.g.,

n or n2 processors), then constrains the problem to be analyzed, and finally specifies the

interconnection network. An order-of analysis is then obtained based on the specified real

or fictitious architecture.
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Aside from the difficulties of defining acceptable performance measures and analyzing

the parallel algorithms, Jamieson, Gannon, and Douglass have suggested the existence of

parallel programming paradigms and have identified three parallel computational models:

"1) Compute-aggregate-broadcast algorithms, composed of a compute phase, a combin-

ing phase, and a broadcast phase in which the aggregate information is returned to the

processes; 2) Pipelined and systolic processes; 3) Divide-and-conquer strategies" (38:1).

In addition to these computational models, in Chapter 3 of (38), Jamieson presents the

I algorithm development life cycle depicted in Figure 2.7.

I
I
I

I
I
I
I
I

AAlgorithm

Figure 2.7. Algorithm Development Life Cycle (38:69)

The first step in the development cycle is to develop a problem statement and general

approach. Next, a "virtual algorithm" is developed which "represents the point at which
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the computational steps to be performed have been determined, but the mapping of those

steps to an architecture has not yet been committed." From the virtual algorithm, the de-

signer develops an ideal algorithm which corresponds "to the parallel algorithm that would

be selected if no constraints were placed on the architecture configuration. In general, this

is the best known parallel implementation of the virtual algorithm." Given the virtual

and ideal algorithms, a choice of a physical architecture is made and the "architecture-

dependent algorithm" is developed. Jamieson's development life cycle does not include

feedback paths, but it is the belief of this author that no engineering development can

proceed without at least revisiting previous decisions at each step in the development.

Therefore, Figure 2.7 includes feedback paths not present in Jamieson's original model.

Jamieson's development of a parallel software life cycle follows the design process

noted in at least two other articles. In their article (56), Wah, Li, and Yu first describe

the characteristics and problems associated with the parallelization of combinatorial search

problems (problem statement). They then discuss the types of algorithms used to solve

these search problems (general approach to the problem). Rather than develop a virtual

and ideal algorithm for the search problems, they propose a computer specifically designed

for combinatorial search problems called "MANIP - a multiprocessor for parallel best-first

search" (56:97).

Carriero and Gelernter (15) present yet another development cycle for parallel pro-

gramming which is similar to Jamieson's model. Their model develops conceptual classes

for understanding parallelism and programming paradigms for implementing parallel pro-

grams.I
The conceptual classes are result parallelism, which centers on parallel com-

putation of all elements in a data structure; agenda parallelism, which specifies
an agenda of tasks for parallel execution; and specialist parallelism, in which
specialist agents solve problems cooperatively. The programming paradigms
center on live data structures that transform themselves into result data struc-
tures; distributed data structures that are accessible to many processes simulta-
neously; and message passing, in which all data objects are encapsulated within
explicitly communicating processes. (15:323)
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Their development process also follows the general structure presented. "To write a

parallel program, (1) choose the concept class that is most natural for the problem; (2)

write a program using the method that is most natural for that conceptual class; and (3)

if the resulting program is not acceptably efficient, transform it methodically into a more

efficient version by switching from a more-natural method to a more-efficient one" (15:325).

Chandy and Misra (16) pursue a different approach to the development of parallel

algorithms. They assert that "the unity of the programming task transcends differences

between the architectures on which programs can be executed and the application domains

from which problems are drawn" (16:vii). Based on this assertion, they develop a compu-

tational model with an associated "notation for specifications" called UNITY (Unbounded

Nondeterministic Iterative Transformations) which is based on a state-transition model

of a problem. Their design process is to state the problem and then iteratively develop

more complex UNITY representations of the problem through program schemas until the

UNITY metaprogram is sufficiently developed to map directly to a target architecture.

This process of iteratively developing more complex representations of the problem is basi-

cally the same approach proposed in the previous paragraphs. The key contribution made

by Chandy and Misra is the development of a design syntax which can be used to define

the algorithm at a high level. Since UNITY is more structured, the parallel algorithms

designed in Chapters III and IV are stated in UNITY along with an explanation of the

semantics associated with the syntax. It is worth mentioning that UNITY is essentially

a variation of predicate calculus and is similar to the notation developed by Hoare in

Communicating Sequential Processes (28).

U 2.6 General Parallel Algorithm Design for NP-Complete Problems

The previous sections have described generic search techniques, parallel architec-

tures, and parallel algorithm design methods. This section combines, at a high level, the

* information presented to develop a general structure for searching NP-complete problems

on parallel architectures. Most algorithms for NP-complete search problems incorporate

some form of a branch-and-bound or divide-and-conquer algorithm. Both of these algo-

rithms are symmetrically appealing from a parallel programming approach since they map
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directly to a tree structure; therefore, the use of these two search techniques in a parallel

algorithm is presented. But first, common questions must be asked before designing a

parallel program using either algorithm. For instance (23, 46):

" How should the data be distributed across the processors and what should the grain

* size be?

" If the architecture is loosely coupled (e.g., a cube-connected architecture), should a

I global best cost be maintained and transmitted to the searching processors? How

often and in what manner should the transfer be accomplished? For example, should

I all processors be notified immediately by a central processor whenever a better cost

is discovered or should the searching processors poll each other for a better cost?

These questions arise since frequent transmission of a better cost may create com-

munications bottlenecks, but global knowledge of the best cost is necessary to prevent

I duplication of subbranches in individual processors.

* Is it profitable to compute a near optimal solution using, perhaps, a greedy method

before the parallel search begins? If so, this first solution could be used to bound the

initial search.

" Should static or dynamic load balancing be used? Dynamic load balancing could

be computationally expensive; therefore, is it possible to predetermine an acceptable

static load balance? And if dynamic load balancing is implemented, how does the

algorithm detect termination of the search?

The answers to all of these questions are obviously problem dependent and greatly in-

fluence the design. Furthermore, the answers to all but the first question can not be

fully answered without implementing an algorithm and then observing its performance;

therefore, the answers to these questions are left to future chapters. The next section

focuses on the parallelization of a divide-and-conquer algorithm. In distributed systems,

divide-and-conquer is typically used to distribute the data for processing by the individual

* processors.
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2.6.1 Divide-and-Conquer "Parallel processing of divide-and-conquer algorithms

I can be classified into three types:

1. Multiprocessors are connected in the form of a tree, especially a binary tree.

2. Virtual tree machine consisting of a number of processors with private memory.

3. All processors are connected to a common memory through a common bus" (56:95).

I Recall that a divide-and-conquer search occurs in three phases: startup, computation, and

wind-down. During startup, the problem is divided into smaller subproblems which are

then divided among the processors. The computation phase occurs when each processor

searches its subproblem(s). The wind-down phase occurs as each processor completes its

1 search and transmits its results (56:95). The time spent on startup is usually insignificant

compared to computation and wind-down. Furthermore, the computation and wind-down

* phases for NP-complete problems are unpredictable since NP-complete search problems

are typically inhomogeneous . Therefore, the amount of searching each processor must

accomplish can be radically different and some method of dynamic load balancing is usually

required to achieve maximum performance (25:8).

I For the search of NP-complete problems, a divide-and-conquer algorithm partitions

the search tree among the cube-connected processors. The individual processors search

their subbranch and report the results to a central processor. Further division of remaining

search trees is accomplished and the finished processor is given another subbranch of

the search tree. Divide-and-conquer is used to distribute subbranches to the searching

* processors which then use a branch-and-bound algorithm to search the subbranch.

2.6.2 Branch-and-Bound In many parallel search algorithms, branch-and-bound al-

gorithms are used to search subproblems created by divide-and-conquer algorithms (53). A

branch-and-bound algorithm consists of the same three phases as the divide-and-conquer.

During the startup phase, disjoint subproblems are generated and then assigned to each

processor either dynamically (as a processor finishes with one subproblem it receives an-

other) or statically using some heuristic function to determine which processor receives

which subproblem(s). The most significant problem associated with the generation of the
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subproblems is the generation of subproblems which do not contain the "best lower bounds

in the global sense" (1:1497). While the generation of less than optimal subproblems does

not affect the correctness of the algorithm, "it does increase the number of subproblems

examined by the algorithm" (1:1497) and may increase the time required to solve the

problem.

Each processor searches an assigned subproblem during the computation phase. Es-

pecially important during this phase is the early broadcast of the global best solution. As

each processor computes a solution, that solution is compared against the best solution

obtained thus far by all processors (global best solution). The global best is used along

with the local best solution in the branch-and-bound elimination procedure to prune the

search tree (53:1528). Two problems may arise from the broadcast of the global best solu-

tion. First, it may cause a load imbalance in the parallel search. For example, the global

best may allow one processor to prune nearly its entire search tree while the search tree of

another processor is only partially pruned. Such an imbalance increases the likelihood of

processor idle time and thus lowers the efficiency of the search. The second problem arising

from a broadcast of the global best solution results when the global best is not transmitted

early enough. In this case, processors may duplicate portions of the search (53:1526).

Division of the search tree and broadcast of a global best solution results in the

search tree being searched in a different order in the parallel and serial algorithms. This

can result in an anomaly discussed by Lai and Sahni (40) and summed up by Wah, Li,

3 and Yu (56) as follows:

A k-fold speedup is expected when k processors are used. However, simula-
tions have shown that the number of iterations for a parallel branch-and-bound
algorithm using k processors can be more than the number of iterations of the
best serial algorithm (this phenomenon is a detrimental anomaly); less than

one-k th of the number of iterations of the best serial algorithm (an accelera-
tion anomaly); or less than the number of iterations of the best serial algorithm,
but more than one-k th of the number of iterations of the best serial algorithm
(an deceleration anomaly). (56:95)

I The wind-down phase occurs when the number of subproblems is less than the num-

ber of processors. Increasingly more processors become idle until the search is complete.

I
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In most instances, the ideal situation is for all processors to work until the solution is

obtained (i.e., no processor is ever idle). The inhomogeneous nature of an NP-complete

problem's search space makes this difficult to accomplish.

In their most basic form, parallel divide-and-conquer and branch-and-bound algo-

rithms are multiple versions of serial algorithms executing on serial processors searching a

subset of the total search space with the search bounded by the global and local best solu-

tions. The previous sections examined parallel divide-and-conquer and branch-and-bound

techniques. This research draws on both techniques to design a parallel search technique

for NP-complete problems.

2.7 Summary

This chapter has focused on the topics of NP-completeness, the SCP, generic search

techniques, parallel architectures, and parallel algorithm design for NP-complete problems.

To be NP-complete a problem must satisfy two requirements: (1) it must be in the class

A/P, and (2) it must be transformable to all other NP-complete problems in polynomial

time and vice-versa.

The SCP is briefly explained to be the selection of a set of columns from a 0-1 matrix

such that the cost of the covering columns is minimal and all rows of the matrix are covered

by at least one element in any of the covering columns. A more detailed explanation of

the SCP is provided in Section E.6. Included are the formal definition, search techniques

including the construction of a table to assist in the search, a priori reductions, a dominance

test, and a lower bound test.

The search techniques presented in this chapter are generic and constitute a base

from which many common search algorithms are developed. Since the objective of this

research is the optimal solution of NP-complete problems, only optimal search techniques

are used; hence, the greedy method and probabilistic search methods are not considered

beyond their introduction in this chapter. A search based on divide-and-conquer and

branch-and-bound techniques offers the most promise for an efficient parallel search.

The parallel architecture section briefly discusses common methods for classifying
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parallel architectures and introduces current parallel architectures. References are given

to more complete descriptions. The cube-connected parallel architecture is discussed since

the algorithms for this research are implemented on a cube-connected computer. The

cube-connected computer is especially suited to a tree search since it's network is easily

configured into a tree structure. The last topic covered in the parallel architecture section

is the design of parallel software. Four similar approaches are presented followed by a

discussion of UNITY. UNITY is a structured design syntax aimed at incorporating a

formal notation into the parallel software design process. UNITY versions of the SCP are

developed in Chapters III and IV.

The application of parallel program design to NP-complete problems is presented.

Application of parallel divide-and-conquer and parallel branch-and-bound search tech-

niques is discussed and the algorithms for this research are based on both of these search

techniques. More specifically, the subbranches are allocated to the processors using divide-

and-conquer and searched with a branch-and-bound algorithm.

3 Though somewhat lengthy, this survey only introduces the available information.

An entire library can be constructed using just the articles and books covering search

techniques and parallel processing. The ultimate objective of this review is to sufficiently

cover the topics so that the reader can better appreciate the decisions made during the

3 design of the parallel SCP algorithms conducted in next two chapters.
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III. Methodology & Design

3.1 Introduction

The purpose of thiq chapter is to discuss the research methodology and conduct a

preliminary design of a parallel version of the set covering problem (SCP) for the Intel

iPSC/2 Concurrent Supercomputer. The methodology is contained in Section 3.2 and

the preliminary design in Section 3.3. The preliminary design defines the control and data

structures for all the SCP routines, develops UNITY metaprograms for a serial and parallel

3 branch-and-bound SCP algorithm, and describes the parallel reductions. The detailed

design of the parallel SCP, reduction techniques, dominance test, and lower bound test are

3 described in Chapter IV. Section 3.4 is a complexity analysis of the SCP and Section 3.5

discusses the computer equipment (iPSC/2 hardware and software) to be used in the

3 implementation of this design.

3.2 Research Methodology

The following methodology outlines a systematic approach for implementing a par-

allel program to solve the general SCP. The problem is addressed in the following manner:

1. Develop a conceptual and in-depth understanding of the SCP in terms of its overall

structure. In other words, define the nature of the problem.

2. Survey and evaluate current serial SCP algorithms and select the "best" candidates

for further development.

3. Develop parallel algorithms for solving the SCP and evaluate their expected perfor-

mance using complexity analysis.

4. Implement (program) the best parallel algorithm on the iPSC/2.

5. Evaluate the performance of the parallel program or programs using performance

metrics developed in the course of this research.

The following paragraphs summarize the various parts of the research methodology:
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First, a thorough understanding of the SCP must be developed before attempting

to construct any algorithms. Conceptually, the SCP is relatively easy to understand: it is

a search of a 0-1 matrix to find the minimum cost covering sets (Sections 2.3 and E.6).

The methods for conducting such a search are numerous and are presented in the previous

chapter. In addition to the basic search, various techniques are available to reduce the input

problem's dimensions and to improve the efficiency of the search. Many articles relating

to the SCP's solution and applications were obtained and studied (18, 7, 52, 27, 43, 17).

The next step is to conduct a survey of and evaluate current SCP algorithms. This

survey is necessary to prevent any duplication of previous work. Particular effort is concen-

trated on obtaining parallel SCP algorithms or algorithms for other NP-complete problems

that are applicable to the SCP. The results of the survey are summarized in Chapter II and

indicate that only serial SCP algorithms have been published (17, 18, 7, 52, 27, 43); how-

ever, since all NP-complete problem are related and several references were obtained on

parallel implementations of other NP-complete problems (56, 21, 23, 46, 53, 40, 1, 50, 25),

it is reasonable to assume that the references can offer suggestions that apply to this

project. Information of interest is the application of general, parallel search algorithms

to NP-complete problems, data structures used in the parallel solution of NP-complete

problems, and methods for load balancing parallel algorithms.

3 Tht serial SCP algorithm obtained from the survey is evaluated using the parallel

algorithm characteristics presented in Section 2.5.3. The characteristics of interest are the

problem's inherent parallelism, its load balancing requirements (hardware dependent), and

its mapping to a parallel architecture. Christofides' (17) serial SCP algorithm, Section 2.3,

3 is modified for this research so that it can effectively search for a set cover in a parallel

environment. Such modifications include the distribution of data and control as well as

3 the load balancing required to improve the efficiency of the parallel search algorithm.

The third step is to develop the parallel algorithms and analyze their expected per-3 formance. A design syntax called UNITY, mentioned in Section 2.5.3 and described in

SectionlII:UNITY, is iteratively applied to develop the parallel algorit ,ns. Unlike algo-

3 rithms for serial machines, parallel algorithms are generally developed for specific parallel

architectures. Such factors as the number of processors, the computer's interconnection
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network, and the processor's access to memory must be considered in the algorithm de-

sign and analysis at some level of development (reference Section 2.5.3). Furthermore,

good engineering practice requires a complexity analysis be performed on the algorithms

to determine their expected performance. This complexity analysis lends insight into the

algorithms and, in many cases, can indicate a less than efficitnt lgorithm design. There-

I fore, a worst and best case complexity analysis of the SCP algorithms is conducted. The

worst case analysis assumes a serial computer architecture since the worst case must occur

when only one processor is searching. The best case analysis assumes the SCP search is

executed on a computer specifically designed for the associated search algorithms. This

I mythical computer has an unlimited number of processors, an interconnection network

specifically designed for the problem's architecture, unconstrained access to memory, and

I no communications overhead.

Following the design of the parallel algorithms, the forth step is to implement the

algorithms on the iPSC/2. As mentioned in Section 1.5, much of the initial software

development is efficiently done on a personal computer using Turbo C. The library routines

are defined a little differently between Turbo C and the iPSC/2's C compiler. For instance,

Turbo C's time routine returns a different type than the iPSC/2's C compiler. Hence, the

programs written for Turbo C must be modified when hosted on the iPSC/2. C's use of

conditional compilation makes this conversion simple. A more detailed description of both

Turbo C and the iPSC/2's C compiler are provided in Section 3.5.

3 The final step in this research methodology is to empirically analyze the program's

performance in terms of its efficiency, effectiveness, time, and space requirements. The

3 analysis consists of executing the program with selected input data and collecting various

performance metrics. Clearly, the following list of metrics is not all encompassing; however,

3 it is sufficient for the purpose of this research:

Total Program Execution Time - Total execution time for the SCP program.

Search Time - Time the algorithms actually spent searching. Does not include time to

3 build the table, sort the data, and so forth.
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Expanded Nodes - Number of nodes expanded in the search tree by each searching

processor.

Processor Idle Time - Time the searching processors are waiting for data to search.

Minimum Solution Time - Program execution time until the optimal solution was

3 first found.

Global Best Cost Broadcasts - Number of times the global best cost is broadcast to

* the searching processors.

Support Time - Time to sort the input data, build the table, and execute any reduc-

I tions.

Search Efficiency - Sum of the individual processor search times divided by the product

of the total program execution time and the number of searching processors.

3 Speedup - Execution time of the best serial algorithm divided by the execution time of

the parallel algorithm.

Load Balance Time - Time each processor spent load balancing instead of searching.

Search State - The state of the search at each node in the search tree.I
An evaluation of the run-time analysis probably necessitates slight program changes to

eliminate program bottlenecks. Such changes are expected to be minor given the thorough

algorithm design and complexity analysis previously accomplished. Testing consists of3 verifying the efficiency and effectiveness of the algorithms by careful selection of a set of

test files as described further in Chapter V.

3 The preceding methodology is necessary to guide the development and analysis of

a parallel algorithm to solve NP-complete problems. Other approaches to solving this

3 problem are certainly available (56, 4, 14, 38, 19, 50, 25, 16, 6, 15, 28) and three were

previously presented in Section 2.5.3. The complete design of the parallel programs in-

3 volves a preliminary and detailed design. Although the search process is relatively easy to

understand, an efficient and effective parallel algorithm is not easy to design for reasons

* discussed in Chapter II. The following sections in this chapter summarize the preliminary

design whereas Chapter IV presents the detailed design.
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3.3 SCP Program Design

The design of a parallel program involves many tradeoffs. The choices for dividing the

control and data structures are numerous and the designer can quickly become confused

by the myriad of choices. Given the relative infancy of parallel program design, it is

difficult to prove any one method of decomposition is more efficient than the multitude of

others. In fact, it becomes difficult to justify the designer's decision of just what efficient

means. Furthermore, as with any project, there is always a tradeoff between time spent

designing versus time allotted to the project as the chosen control and data structures

must ultimately be programmed. The control/data structures must not be so complex

that they can not be implemented within the available development time.

A basic, branch-and-bound, serial SCP algorithm is presented in Christofides (17)

and forms the basis for the parallel algorithms developed in this project. Although his

3 algorithm is written and implemented on a serial machine, many of the steps involved in

finding a cover are applicable to parallel machines. As stated in Chapter II, an optimal

search may involve a considerable amount of bookkeeping; therefore, Christofides' algo-

rithm preprocesses the data by constructing a table. The table eases the combining of

* columns by ensuring a cover is present whenever one set is chosen from each block in the

table. In addition to the branch-and-bound search, Christofides outlines several algorithms

which potentially decrease the amount of searching required (e.g., reductions, dominance

testing, and a lower bound test). The following high-level algorithm provides a starting

* point for the design:

Algorithm High-l eve Search
Reduce matrix
Build 0-1 table
Search table for an optimal set cover

End High-level Search

The routines to build and search the table are the core of the SCP in both the

serial and parallel algorithms; hence, these routines are designed first. The reductions,

dominance test, and lower bound test routines explained in Section E.6 are added to the

design later. The designer must first divide the problem control and data structures such

that all processors share in the search process (i.e., no idle processors). This division
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or parallelization of the problem usually results in control and data structures which are

classified as either functional or data parallel. Functional parallelism divides the problem

into a set of individual processes which are scheduled and executed based on precedence

relations. Data parallelism replicates an inherently sequential algorithm on all processors

and then partitions or divides the data between the processors. The processors then execute

their algorithm and combine the partial solutions into a single answer (6, 19).

Simulations and operating systems are good examples of functional parallelism (19).

These problems can be divided into essentially autonomous processes with the relation-

ship between the processes represented by a precedence data structure graph. Processes

are scheduled on processors and communicate as necessary to ensure the precedence rela-

tionships are satisfied. The search graph (control structure) generated by the search for

an optimal set cover also defines a precedence relationship. At each stage of the search

down a branch of the graph, a required set of nodes must be expanded first. Although

possible to structure the SCP in this manner, the number of precedence relationships grow

exponentially making it difficult to manage (ref. Section 3.4). It is thus more prudent to

structure the SCP as a data parallelism problem.

A data parallelism approach to parallelizing the SCP divides the search tree among

the processors in such a manner that each processor searches a different subbranch of the

search tree! These processors then execute an identical search algorithm on their allotted

portion of the search tree. When a processor finishes its search, it sends its best solution to a

central, controlling processor. The controlling processor retains the best solution obtained

by any processor. Once all processors have completed their search, the controlling processor

contains the optimal cover for the original input problem. Since autonomous processors

are searching subbranches of the search tree, two important questions must be considered:

I Should the best cost maintained by a controlling processor be transmitted to the

searching processors for inclusion in their bounding functions? As each processor

searches its allotted subbranch, it retains its best cover for future pruning of its

search tree. If the searching processors were to transmit their best cover at some

suitable stage of their search and receive a copy of the best cost maintained by the
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controlling processor (i.e., the best cost found so far by all searching processors), it

I could prune its search tree even further.

. How should the subbranches be developed and how should they be divided among

the searching processors? The central controlling processor could determine the al-

location of subbranches once at the beginning of the search (coarse grain approach

with static load balancing) or it could determine the allocation as the processors are

searching (dynamic load balancing). An algorithm based on a coarse grain approach

is more likely to have idle processors because NP-complete problems are inhomoge-

neous making it difficult, if not impossible, to allocate subbranches requiring equal

expansion. On the other hand, a dynamic load balanced approach dynamically devel-

ops and allocates the subbranches and may not induce as much processor idle-time.

The major drawback with dynamic load balancing is of course the added complexity

of the algorithms and the overhead time required to divide and allocate the sub-

branches.

I 3.3.1 Control/Data Structures A functional parallelism algorithm is initially ap-

pealing since it maps the algorithm's control structure directly to the computer archi-

I tecture. However, the number of precedence relationships can grow exponentially for

NP-complete problems making the bookkeeping difficult. Therefore, a data parallelism

I approach is used to implement the SCP. This method of parallel data decomposition leads

to a quicker design and implementation on a project that promises to be quite large and

I software intensive. Furthermore, many of the articles reviewed in conjunction with this re-

search topic have implemented NP-complete searches using similar techniques for parallel

I decomposition (1, 23, 46, 53). Initially, the data is allocated using a coarse grain approach

with static allocation of the search tree; in other words, the input data is partitioned into

large subbranches with each searching processor receiving at least one subbranch. This

method of data decomposition is straight forward and requires development of all the ma-

jor program algorithms. The static allocation method is then analyzed to determine if a

dynamic allocation of the initial search tree is necessary. The key performance parameter

to be observed is individual processor idle-time indicating the need for further load balanc-

I
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ing. Other performance metrics observed are the number of nodes expanded by individual

processors and the number of times the global best cost maintained by the controlling

processor is transmitted to the searching processors.

Given the decision to develop the SCP algorithms using a data parallelism approach,

the input matrix is broadcast to all processors participating in the search. Each processor

constructs a table (Section E.6.5, page E-12) to assist in the search (17, 18). The processors

then expand the search tree using the table and a breadth-first algorithm (explained on

page 3-13) until each processor has at least one distinct subbranch of the search tree. The

processors then search their allotted subbranch. During the search process, the searching

processors transmit their best cover to the controlling processor whenever their best cost

is better than their copy of the global best cost. Each searching processor also checks its

receive buffer for a new global best cost after each backtracking step and updates its copy

of the global best cost if the received global best cost is better than the locally maintained

copy of the global best cost.

Now that a high-level, preliminary design of a parallel algorithm for the SCP exists,

the data structures required to implement this algorithm must be defined. The 0-1 matrix

is a two dimensional matrix containing a '1' in every location where a row is covered by

a column and a '0' elsewhere. The colum.is of the matrix have an associated cost; hence,

the costs are stored in a cost vector (one-dimensional matrix). Each processor constructs

a table to assist in the search. The data structure for the table could be another two-

3 dimensional matrix explicitly listing the rows and columns in the matrix. This approach

builds the table illustrated in Figure E.11 on page E-12. The size of the resulting matrix

is potentially nrows2 x ncols where nrows is the number of rows in the matrix and ncols

is the number of columns. In addition to the table, vectors are required to keep track of

* which sets (columns) are currently in the list of covering sets and which rows are currently

covered.

At this stage of the design, the data structures just defined could be used to search

for a set cover. However, it is possible to construct the table as a linked-list of pointers

into the 0-1 matrix and decrease memory usage. A linked-list table complicates the search

algorithm but the savings in memory might be needed by the search algorithm for stor-
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age of the stack, dominance test L matrix, or the lower bound test D and D' matrices

(Sections E.6.6 and E.6.7).

One final modification to the table is suggested by Christofides (17:42). He suggests

arranging the blocks of the table in ascending order according to the number of columns

in each block. In other words, sort the rows in increasing order according to the number

of l's in each row. The resulting table is shown in Figure 3.1 and a search of this table

is shown in Figure 3.2. Sorting the rows in this manner decreases, in many instances, the

number of nodes expanded since the search tree traversal is more vertical than horizontal.

A decrease in the number of expanded nodes corresponds to a decrease in the solution

time. For example, consider the table constructed in Section E.11 and the resulting search

tree shown in Figure E.12. A comparison between the two search trees clearly illustrates

the vertical versus horizontal expansion. Obviously, there exist problems which violate this

assumption, but such is the nature of NP-complete problems.

Figure 3.3 illustrates the linked-list table (hence forth known as the table) used in

this implementation. The rows and columns in the table are indices into a vertex vector,

Figure 3.4, and a set vector, Figure 3.5. Each vertex record contains an index to a row

Blocks
0 1 2 3 4 5

Columns
3 0 6 1 5 4 6 4 7 6 1 5 0 2 7 5 0 2 7 1

2 1
5I 01 11

Rows 4 0 0 1 0 1 1 1
3 0 0 1 1 0 1 1 1 1 1 1
1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1
0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1

84 6 7 2 3 6 3 5 6 7 2 4 5 5 2 4 5 5 7

Costs

Figure 3.1. New Table for Figure 2.1

in the matrix (Index), the number of l's in the indexed row (Cardinality), and whether

the indexed row is covered (Covered). Each set record contains an index to a column in
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I Figure 3.3. Table Data Structure
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the matrix (Index), the cost associated with the indexed column (Cost), and whether the

indexed column has been used as a covering set (Used). A vertex/set vector consists of a

list of vertex/set records as shown in Figures 3.4 and 3.5.

Vertex Record

RO 2 1 0

R1 5 3 0

R2 4 3 0

R3 3 4 0

R4 1 4 0

R5 0 5 0

* Covered

Cardinality

Index

Figure 3.4. Vertex Record

Set Record

CO C1 C2 C3 C4 C5 C6 C7

5 4 0 2 7 6 1 3 Index

2 3 4 5 5 6 7 8 Cost

0 0 0 0 0 0 0 0 Used

U Figure 3.5. Set Record

Realize, of course, that a second level of indirection is now required to access the

0-1 matrix. The algorithm is more complicated, but the 0-1 matrix is never changed and

operations such as sorting are performed more efficiently on the vertex and set records than

could be performed on the entire 0-1 matrix. For example, consider sorting the columns
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of an N x N matrix according to ascending column cost. The matrix consists of N 2

elements and the set vector consists of N records. To sort the column costs is O(N log N)

regardless of whether the matrix elements or set vector records are moved (10:462). Now,

consider the number of memory moves required to sort the matrix versus the number of

moves required to sort the set vector. To sort the matrix requires N memory swaps for

each of the O(NlogN) comparisons for an order-of O(N 2 logN). On the other hand, the

set vector is composed of only three elements and a sort of it is O(3NlogN). Hence,

provided N > 3, it is much more efficient to sort the set vector rather than the matrix

elements. A similar argument can be made for sorting the vertex vector rather than the

matrix elements.

Now that the basic data structures exist for the parallel SCP solution, the next task

is to develop an algorithm to divide the search tree among the searching processors. A

breadth-first expansion, as stated, divides the search tree so that each processor is assigned

a distinct section of the initial search tree. The expansion is accomplished with the aid of

the table. For example, consider a breadth-first expansion of Blocks 0 and 1 in Figure 3.3.

An expansion results in three separate tables which can be assigned to separate processors

for searching. Rather than construct three separate tables, it is more economical (saves

time and space) to simply save lists of expanded TABLE.JODEs and let them continue to

point into the full table, Figure 3.6. The searching processors are then instructed to search

their copy of the full table starting with a specified list of expanded TABLEJIODEs.

The algorithm for accomplishing the expansion uses a queue to keep the lists of

expanded TABLE.NODEs and continually extracts an expanded list off the front of the queue

and appends a newly expanded list onto the rear of the queue.

Algorithm Breadth-first Expansion (SCP)
Put all TABLEJODEs from Block 0 in the queue
Loop until every searcher has at least one subtree to search

Point to the first TABLE.NODE in the next block
Extract a list off the queue
Loop for all TABLE.ZODEs in this block

Append TABLE-JODE to list
Insert new list into the queue

Point to next TABLE-NODE in this block
End loop

End loop
End Breadth-first Expansion (SCP)
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Block 0 rBlock 0 Block 0IRO C7 N O C07 N RO C7 IN

IBoc

R20CO R2 C1 R2C N
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Block 5
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TABLE-NODE
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Figure 3.6. Three Subtables for Three Searching Processors
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The expansion illustrated in Figure 3.6 partitions the search tree for a maximum of

I three searching processors. If additional searchers are present, the breadth-first expansion

continues to expand the table until enough subtables (i.e., subtrees) are available such that

I all searchers receive an expanded list of TABLENODEs.

A couple of subtle observations regarding the search graph are worth noting. First,

the breadth-first expansion may expand the entire search tree if the tree is small and many

searching processors are available. In effect, a breadth-first search of the entire search tree

occurs and, as stated in Section 2.4.2.2, such a search is inefficient. The second observation

relates to reduction #2 described in Section E.6.4. Recall that this reduction checks the

input 0-1 matrix for rows covered by only one column. Since the rows of the table are now

sorted in ascending order, any rows covered by only one column are listed first in the table

and are immediately added to the list of covering sets where they remain until the search

is complete. In effect, sorting the rows in ascending order implements reduction #2 and

potentially improves the efficiency of the search at no additional cost in execution time.

* The table is a linked-list of pointers which point to the vertex and set records via

an index into these records. Likewise, the vertex and set records contain indices into the

0-1 matrix. Only one copy of the 0-1 matrix is maintained in memory and is accessed via

the table, vertex record, and set record. The vertex record is sorted in ascending order

according to the row cardinality and the set record is sorted in ascending order according

to the cost of the columns.

* Construction of the table is now complete and an initial algorithm exists to partition

the table between any number of searching processors. Next step is to develop an algorithm

* to search the table for an optimal cover.

3.3.2 Search Algorithm As previously stated in Section 2.5.3, a design syntax lan-

guage known as UNITY is used to design the search algorithms. The design process is

to develop increasingly more complex UNITY representations (i.e., metaprograms) until

the UNITY program is sufficiently developed to map to a target architecture. Before the

UNITY programs are presented, the notation is explained in the following section.
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3.3.2.1 UNITY Notation An explanation of UNITY is contained in Chandy

and Misra (16) from which this brief background is extracted.

Given a specification and a target architecture, a programmer's task is to
derive a program with its proof, select a mapping that maps programs to the
given target architecture, and then evaluate complexity measures. A program
consists of a declaration of variables, a specification of their initial values, and
a set of multiple-assignment statements. A program execution starts from
any state satisfying the initial condition and goes on forever; in each step
of execution some assignment statement is selected nondeterministically and
executed. Nondeterministic selection is constrained by the following "fairness"
rule: Every statement is selected infinitely often. (16:8-9)

I A UNITY program consists of the following four sections:

* declare - The declare-section names the variables used in the program and their types.

always - The always-section defines certain variables as functions of others.

I initially - The initially-section is used to define initial values of some variables; unini-

tialized variables have arbitrary initial values. An initialization is denoted by =.

assign - The assign-section contains a set of of assignment statements denoted by

* An assignment statement may consist of multiple assignments

x, y, z := 0, 1, 2

or as a set of assignment components separated by

x:=0 11 y:= 1 1 z:=3

In either case, all variables are assigned simultaneously.

The last structure of importance is a case statement and is denoted as follows:

x:= -1 ify<0,
0 ify = 0,
1 ify>0

in which x is assigned a value depending on the evaluatici 0 y.

The above notation should provide enough background to interpret the UNITY pro-

grams presented in the following sections. As before, more information is available in

Chapter 2 of Chandy and Misra (16).
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3.3.2.2 Serial SCP UNITY Program Since the parallel SCP programs are

I derived in part from serial SCP programs, a serial SCP UNITY program is developed first

and then transformed to a parallel UNITY program. The serial SCP algorithm is derived

from Christofides (17:41-42) branch-and-bound SCP algorithm. Recall from Section 2.4.6

that a branch-and-bound search executes a depth-first expansion with bounding functions

I which limit the depth of the search graph. Four such bounding functions are defined for

the SCP and are based on the cost of the current set of covering sets, the existence of a

I cover, the result from a dominance test, and the result from a lower bound test.

For example, consider the search for the optimal set cover of the 0-1 matrix in

Figure 2.1. For the purpose of this example, the bounding functions are limited to the

cost of the current set of covering sets and the existence of a cover. The reader should

consult Section E.6 for a more detailed explanation of the search process involving all four

bounding functions. The search algorithm selects columns from the matrix according to

the following two rules: 1) the columns are chosen from left to right in the matrix and

2) a candidate column must cover a row not covered by the current set of columns. The

search algorithm backtracks whenever all the rows are covered or the cumulative cost of the

columns exceeds a previous cover. The resulting search graph is illustrated in Figure 3.7.

The search graph represents the process of adding and removing columns for a list of

covering sets. At the leaf node in each path, the search algorithm backtracks for one of

three reasons: 1) a better cover has been found, 2) inclusion of the next column exceeds

the best cost cover thus far, or 3) no solution is possible down the current path. The large

nodes in the search graph are the columns which are added to the list of covering sets. The

small nodes represent columns which were considered for inclusion but were not included

because to do so would result in a cost greater than the best cost obtain thus far or no

solution is possible down the current path. The cost of each new cover is denoted at the

leaf nodes as I. The reader is referred to Appendix E for a detailed explanation of the

* serial SCP search process.

The following paragraphs first explain the four bounding functions and then present

a UNITY program for a serial branch-and-bound SCP based on the Subset-Sum UNITY

program presented in Chandy and Misra (16:444-446).
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Cost: The cost of a cover is the cumulative cost of the sets chosen to cover the

vertices. Let 1 represent the best cost obtained for a cover and z represent the cost of

the current state of the search comprised of a set of covering sets. If z > ; the algorithm

backtracks since a better solution can not be found following the current path.

Cover: A set cover was defined in equation E.1 on page E-4. Let cover be a boolean

variable that is true if the current list of covering sets contains a cover per equation E.1.

k
cover = TRUE if U Sjj = R (3.1)

If cover is true, the algorithm backtracks since the addition of more covering sets only

serves to increase the cost of the cover.

Dominance test: Let D be a boolean variable that is true if the current state of

the search is dominated by a previously saved state. Let E represent the current state of

the search with a cost ZE and Ep represent previously saved states (E's) with a cost of
zp.

D=TRUE if ECEpAZE _Zp (3.2)

Section E.6.6 on page E-13 explains the details of the dominance test. If D is true, the

algorithm backtracks since the current set of covered vertices is dominated by a previously

saved set of covered vertices. A better solution, by construction, can not be found down a

dominated path.

Lower-bound test: Let L be a boolean variable that is true if the lowest possible

cost down the current path exceeds the best cost. Let 1 represent the lowest possible cost

(achievable or not) down the current path and let i represent the best cost obtained thus

far.
L = TRUE if I> (3.3)

Section E.6.7 on page E-17 explains the details of the lower bound test. If L is true, the

algorithm backtracks since the current path can not lead to a better solution.

In the following UNITY program, seq is a list of covering sets representing the current
state of the search sorted in lexicographical order with a cost of z and S is the optimal

cover with a cost of i. Furthermore, for ease of programming, let there exist an artificial

covering set S[n] that covers all vertices and has a cost of En-1 C[i] + 1. Hence, there are
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S[O ... n] covering sets that must contain at least one cover.

Program Serial SCP
declare

C[v] :t {cost of covering set v)
I int {calculated lower bound}
v int {index variable}
z int {cost of the current state of the search}I int {cost of the best cover}
cover : boolean {TRUE if a cover exists}
D boolean {TRUE if a dominate set exists}
L boolean {TRUE if lower bound is exceeded}
seq set {current state of the search}

: set {the best cover}
always

1<v<n
z = (+i : i E seq :: C[i])
z = z if cover A z < i

= seq if cover A z < 2

D(v) = TRUE if seq U v is dominated by a previous seq
FALSE

L(v) =TRUE if z+C[v]>l-

initially 
FALSE

1, v, z, z = 0, 0, 0, 00
seq, S = null, null

assign
seq, V
seq;v, v+ 1 if z+C[v] < Aover A D(seq;v) AL(seq;v) .

pop(seq), top(seq)+l if seq null A (z + C[v] > V cover v
D(seq; v) V L(seq; v)) .

null, n if seq= null A (z + C[v] > i V cover V
d D(seq; v) V L(seq; v))

End {Serial SCP}

The always-section performs several functions:

1. It ensures that the cost (z) of the current covering sets (seq) is the sum of the costs

of the individual covering sets (C[v]).

2. It keeps the best cost (i) current by setting it to a lower cost cover if one is found.

In addition, it keeps the best cover (S) current by setting it to the lowest cost cover.

3. It keeps the bounding functions, D and L, current.
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There are three possible assignments in the assign-section. The first assignment

extends the set of covering sets (seq) by adding the next covering set, indexed bv r, to

seq and incrementing the index to the next covering set. The second assignment is the

backtrack step. The backtrack removes the last covering set (pop(seq)) from seq and sets

the index to the covering set following the removed covering set. The last assignment

I ensures that the search process does not repeat or abort.

Now that the program has been developed, an invariant, fixed point, and progress

condition are derived to ensure that the UNITY program correctly finds the optimal solu-

tion. Upon completion of the program, a set cover has been found if:

4 S[n] (3.4)

I The following invariant states that the sequence (seq; v) is constantly increasing;

thus, all possible covers are investigated using covering sets S[O .. n]. The second conjunct

states that a cover is eventually found. This must be true since an artificial cover (S[n])

was included in the list of covering sets. However, if S = S[n], a cover involving the real

covering sets was not found.

I invariant
(seq; v) is an increasing sequence of covering sets

A eventually S 5 null A i $ oo

A fixed point for this program is reached when all feasible covers have been generated.

At this point, the program repeatedly assigns seq = null and v = n.

fixed point FP = (seq=nullAv=n)

* Progress Condition: The invariant ensures that a seq is never repeated and always

increasing until all feasible covers have been generated. The optimal cover is updated

whenever a better cover is found. The last assignment statement in the program ensures

that the fixed point is reached and maintained whenever all feasible covers have been

explored. Thus, this UNITY program continually finds covering sets and accumulates the

best cover and cost until the fixed point is reached.

I
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3.3.2.3 Parallel SCP UNITY Program The previous UNITY program de-

I scribes a serial branch-and- bound SCP. The serial version is developed first because the

parallel version of the SGP is based on the serial version. The serial UNITY program is,

I therefore, mapped to a parallel UNITY program. In the following program, let k be the

index to N processors:

Program Parallel Branch- and-Bound SCP
declare

G[v] : mt (cost of covering set v}
k in: t (processor index}
Ik int {calculated lower bound)
N injt {number of processors)Ik it { index variable)
Zk int {cost of the current state of the search on a processor}

i it {global best cost)
coverk :boolean f{TRUE if a cover exists)

D boolean { TRUE if a dominate set exists)
Lk :boolean {TRUE if lower bound is exceeded}
Iseqk set {starting state for processor k}Iseq :set {global list of subsequences}
seqk set {current state of the search}

S set {global best cover}

always
1 < k < N A 1< Vk nl
zk =(+i : i E seqk ::C[i])

ZZk if zk < 2Acoverk-

seq = ~k :1I < k < N :: seqk)
(k :1 < k < N ::Iseqk $ Iseqk+1)

(k :1 < k < N ::seqk = Iseqk U seqk)
S seqk if Zrk < i Acoverk
D(vk) =TRUE if seqk U Vk is dominated by a previous seq

FALSE
Lk(vk) =TRUE if zk + C[Vk1 Il'

FALSE
initiallyIi = 00 S seq = null, null

(11 (Ik: 1 < k < N:: lk, Vk, Z, seqk = 0, top(seq) + 1, C[seq], Iseqk)
assign

seqk, vk__ _ _ _ _

seqk; vk, vk + Iif Zk + C[Vkl < Ao-verk A
D(seqk; vk) A Lk(seqk; Vk)

pop(seqk), top(8eqk)+l if seqk $null A (zk + C[vk] V covcrk~ V

D(seqk; vk) V Lk (seqk; vk))
null, n if seqk null A (zk + Clvkl ! i V coverk V

End {Parallel Branch- and- Bound SCP) ~ ek k L sq;V)
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The mapping of the serial program to a parallel program is accomplished using

Idata parallelism discussed in Section 3.3.1. The search graph is partitioned between all

processors such that each processor searches a distinct section of the graph shown in

I IFigure 3.7.

There are three major differences between this program's always-section and the

previous program's. First, many of the variables are now specific to a processor with the

addition of a subscript k. Furthermore, two statements have been added to ensure that a

processor's initial branch of the search graph (Iseyk) is distinct and that the processor's

initial branch is always included in its list of covering sets (segk). The final addition keeps

the global best cost (2) and cover (S) up to date.

* Since global data structures are employed in the parallel program and the input search

graph is partitioned to the processors, additional statements are added to the initially-

3 section. Statements are added to initialize each processor's list of covering sets, its cost,

and its indices.

3The parallel program's assign-section operates the same as the serial program's

assign-section. The only difference is that two of the bounding functions are now global.3 The cost of the covering sets, zk, is compared to a global best cost, i, rather than a local

best cost and the dominance test compares a processor's sequence against a global list of

3sequences. Hence, the best cost and unique subsequences obtained by any processor are

used by all processors to bound their search graph.

-- One of UNITY's strengths is its support of an iterative development design technique

and its ability to rely on previous assertions in the proof system. The invariant remains

the same but the fixed point is modified to control the additional N processors. A fixed

point for the parallel program is reached when all feasible covers have been generated by

all processors. At this point, each processor's program repeatedly assigns seqk = null and

Vk = n.

fixed point

FP = (Ilk: 1 <k< N ::seqk =nullAVk=n)
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The design now includes high-level algorithms to construct the table and partition

the input search tree so that all searching processors receive a subbranch of the tree to

search. Furthermore, serial and parallel UNITY programs exist to search the subbranches.

The UNITY programs are based on a branch-and-bound search of the state space and

include four bounding functions. Pseudo-code algorithms based on the UNITY programs

are presented in the next chapter. The next section presents high-level parallel algorithms

for the general reductions discussed in Section E.6.4.

3.3.3 Reduction Techniques From Section E.6.4, recall that reduction #1 simply

checks whether a solution exists. Given the vertex record, the algorithm looks at the

bottom of the list of vertices and, if the number of l's in the last row is zero, a solution

does not exist and no search is initiated. Reduction #2 removes all vertices that are covered

by only one set, adds the corresponding sets to the list of covering sets, and removes the

covering sets. This algorithm starts at the bottom of the list of vertices and moves up the

list continually examining the vertex cardinality field for rows containing only one covering

3 set. If such a row exists, the algorithm finds the covering set by indexing into the matrix.

The rows covered by this set are then removed from the matrix along with the set. At this

Spoint, the indices into the matrix are incorrect; therefore, it becomes necessary to add an

additional field to the vertex and set records. The new field (True Vertex and True Set)

contains the row/column of the original, unreduced matrix. The original Index field of

the records is now used to index into the reduced matrix. Hence, this field is renumbered

3if any rows or columns are removed. Figures 3.8 and 3.9 show the "newly" created vertex

and set vectors. Reductions #1 and #2 are relatively simple given the specified vertex

and set vectors; hence, these reductions are not parallelized. They are conducted in the

controlling processor a priori.

Reductions #3 and #4 are more complicated and could potentially benefit from a

parallel implementation. The parallelization of these reductions is accomplished by evenly

dividing the vertex or set record between the processors and then marking the rows or

columns to be removed. All processors must receive the same reduced matrix; thus, any

rows and columns to be removed are removed in the controlling processor which then
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Vertex Record

RO 0 5 0 0

i R 1 4 0 1

R2 3 4 0 3

R3 4 3 0 4

i R4 5 3 0 5

R5 2 1 0 2

Index Cardinality Covered True Vertex

Figure 3,8. New Vertex Record

I
I

Set Record

CO Cl C2 C3 C4 C5 C6 C7

5 4 0 2 7 6 1 3 Index

2 3 4 5 5 6 7 8 Cost

I 0 0 0 0 0 0 0 0 Used

5 4 0 2 7 6 1 3 True Set

Figure 3.9. New Set Record
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broadcasts the reduced matrix to the searching processors.

Reduction #3 checks for dominated vertices and reduction #4 checks for dominated

sets as described in Section E.6.4 on page E-10. The algorithm is the same for both

reductions; therefore, only reduction #3 is explained. The check for dominated vertices

requires a comparison between all rows of the matrix. The algorithm selects the first

row and compares it to the following rows as indexed by the vertex vector. If any of the

following rows dominates the first row, the first row is marked in the covered field of the

vertex record and the algorithm immediately selects the second row for comparison. If,

however, the first row dominates any of the following rows, these rows are marked for

removal and the algorithm continues searching the rows for other dominated rows. Once

all dominated rows are found, the rows marked as covered are removed from the 0-1 matrix

and vertex vector. An algorithm is presented in the next chapter.

Reductions #3 and #4 are easily accomplished in a parallel architecture. The entire

0-1 matrix of say N x M elements is distributed to all processors and the vertex vector

is divided evenly among 21 processors for an even number of rows (i.e., N is divisible by

2). In the case of an odd number of rows, the lower address processors (e.g., processor 0,

processor 1) receive one extra vertex record. The reduction algorithm for each processor

checks and marks its initial subset of the vertex vector. Following this, the processors

combine the subsets in a logarithmic fashion1 until the marked vertex vector is reassembled.

For example, let there be four processors numbered 0, 1, 2, and 3 in a parallel

architecture such as a hypercube and let the vertex vector consist of eight vertex records

numbered 0 through 7. The reduction algorithm assigns records 0 and 1 to processor 0,

records 2 and 3 to processor 1, and so forth. Each processor marks the dominated vertices in

its subset of the vertex vector. Processor 0 now receives the vertex vector from processor 1

* and processor 2 receives the vertex vector from processor 3. The vector is once again

checked for dominated vertices skipping those vertices already marked. Finally, processor 0

receives the vertex vector from processor 2 and checks for dominated vertices skipping those

1Combining sets in a logarithmic fashion means to combine the sets of nearest neighbor processors. The
setsare efficiently recombined in this manner since communication is minimal between nearest neighbors
in a hypercube.
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vertices already marked for removal. The number of iterations is thus log2(2') = n for a

I cube of dimension n. An algorithm is presented in the next chapter.

I 3.4 Complexity Analysis

Now that the initial control and data structures have been developed, it is possible

to conduct a complexity analysis. This analysis is divided into a worst and a best case.

The worst case assumes a serial processor whereas the best case is derived from a mythical

architecture specially suited to the SCP. The mythical architecture is described in the

best case analysis.

3.4.1 Worst Case Consider a serial computer searching for the optimal set cover.

It chooses a subset of the total set of covering sets until all possible subsets are checked.

For example, let S = {1, 2, 3} represent the set of covering sets. Now, generate all possible

Isubsets of S: T = {, {1}, {2}, {3}, { 1,2}, { 1,3}, {2,3}, { 1,2,3}}. Such an enumeration of

all possible sets is called a power set (T = P(S)) and contains 2' elements (54:104). In

the worst case, the search algorithm must check all possible subsets of the complete set of

covering sets (excluding the empty set). If there are nsets number of covering sets, the

worst case search generates a power set of the covering sets and is O( 2nsei').

3.4.2 Best Case Consider a hypothetical parallel architecture with 2
' S"S proces-

sors. Furthermore, let the interconnection network allow simultaneous transmission of all

data from a central controller to all processors and the intraprocessor connection network be

structured as a tree. The algorithm on each of the 2n"a" processors checks a specific subset

of the 2na"e subsets such that no two processors check the same subset. One of the proces-

sors must combine all covering sets to compute the cost for subset T = { 1,2, 3,..., nsets}.

The worst case order-of for T is O(nsets) since one processor must include all nsets ele-

ments in its cover.

I Since the central controller can not compare all covering sets simultaneously to ob-

tain the optimal cover, the 2neit processors must do the comparison until the optimal

I cover is found. Given the specified interconnection network, the comparison is structured

I
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as a binary tree. To find the optimal cover now requires 0(log 2(2naet) or O(nsets) com-

I parisons (i.e., communications). The best case solution to the SCP using the hypothetical

architecture is then O(nsets2 ).

3.4.3 iPSC/2 Consider a cube-connected computer such as the iPSC/2 hypercube.

The iPSC/2's communications network allows a broadcast to all processor nodes via an

Ethernet TCP/IP local area network (37:1-12). This network approximates the above

best case specification to transmit to all nodes simultaneously. Furthermore, the cube

network easily models a binary tree network; hence, the node processors are capable of

obtaining the O(log2(2nhet ) or O(nsets) communications. Even so, the iPSC/2 consists of,

at most, 27 = 128 processors. Assuming an algorithm is designed as in the above best case

complexity analysis, the largest problem the iPSC/2 can solve is an N x 7 matrix. Note

that even though it is possible to theoretically obtain this order-of on a realistic computer,

* the implementation is clearly not an efficient use of the hardware.

3.5 Computational Equipment

High-level serial and parallel SCP algorithms have been designed and a complexity

analysis performed on the SCP. One of the goals of this research is to implement a parallel

SCP algorithm on a parallel architecture. Clearly, the mythical architecture specified in

the previous analysis is the ideal parallel computer for this implementation. The mythical

computer does not exist; however, AFIT currently houses three hypercube computers which

are distributed memory computers similar is some respects to the mythical computer. For

instance, the network of a hypercube computer is suitable for implementing a tree search

I as discussed in Section 2.5.2.

Two of AFIT's hypercubes are Intel iPSC/1 models with 32 nodes each and ihe

other hypercube is an iPSC/2 model with 8 nodes. All three are available for this research;

however, the iPSC/2 is a later and more advanced hypercube containing faster hardware

and more software functions. Hence, the programs for this research are implemented on the

iPSC/2. The following two sections briefly describe the iPSC/2's hardware and software.
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3.5.1 Intel iPSC/2 Hypercube The Intel iPSC/2 is a cube-connected supercom-

puter containing between eight and 128 nodes. Each of the nodes contains an 80386

microcomputer, an 80387 numeric coprocessor, an optional SX scalar processor module

based on the Weitek 1167 floating-point unit, an optional VX vector processor, and 1-16

megabytes of memory. The VX vector processor is an extension to the cube and allows

the nodes to achieve more than 4002 million floating-point operations per second (Mflops).

The host contains an 80386 and 80387, eight megabytes of memory, and a 140 megabyte

harddisk (37). AFIT's current configuration is summarized in Table 3.1. The node proces-

Table 3.1. AFIT's iPSC/2 Hypercube Configuration (36, 37, 33)

CPU Intel 80386, 32-bit
Math Coprocessor Intel 80387
Numeric Accelerators SX Scalar Processor
Clock 16 MHz
Operating System Host: AT&T UNIX, Version V

Node: NX/2
Hard Disk 140 Mbytes
Memory Host: 8 Mbytes

Node: 4 Mbytes
Number of Nodes 8
Cube Network Direct-ConnectTM Routing

2.8 MBytes/sec. bandwidth
Max Message Length Host+-+Node: 256 KBytes

Node+-*Node: Memory Size
Max Processes Per Node 20I

sors communicate with each other over Intel's proprietary communications network called

a Direct-ConnectT" network. The network supports simultaneous node-to-node commu-

nication with uniform communication speed between all nodes. Although the nodes are

physically connected as a hypercube, any communication between nodes is controlled in the

hardware. As such, the message path between two communicating nodes is established and

the message is passed by dedicated interface modules. The node's main processor does not

2 Compare to the iPSC/860 recently released by Intel. The iPSC/860 is an expandable supercomputer
based on RISC technology. The system consists of 8 to 128 processors and performance ranges from 480
Mflops to 7.6 Gigaflops.
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cease processing to assist in the communication as is the case with the iPSC/1 hypercube.

Once the link between the communicating nodes is established, the message is transmitted

at 2.8 megabytes per second. This dedicated interface hardware is fast enough to give

the appearance of a direct connection between all nodes. The host processor contains the

development environment which consists of AT&T UNIX System V, FORTRAN, C, and

I LISP compilers (32).

3.5.2 Software AFIT's version of the iPSC/2 contains C, LISP, and FORTRAN

compilers. Either language may be used to implement the SCP algorithms; however, since

the C language contains efficient constructs for manipulating pointers, the SCP algorithms

are written in C. The Green Hills C Compiler hosted on the iPSC/2 is an optimizing

compiler which generates full 32-bit object code and supports standard UNIX functions

as well as cube functions supplied in libraries (34). Many of the programs written for the

SCP are serial; hence, much of the initial code development is conducted on a personal

computer using Borland's Turbo C 2.0 which supports interactive editing, compiling, and

debugging. In addition to the serial programs, many of the parallel programs are written

and compiled under Turbo C. These parallel programs, however, are not tested with

Turbo C because the software required to simulate a hypercube computer is tedious and

difficult to develop. However, the use of Turbo C facilitates quick correction of any compile-

time errors. Standard K&R C (39) is used throughout the coding. Green Hills C and

Turbo C are sufficiently compatible that many of the programs written with Turbo C may

be directly ported to the Green Hills C compiler. As such, few problems were found during

the rehosting of this software.

The software engineering practice is discussed in Section 1.5. All the programs con-

tain common headers shown in Figures 3.10 and 3.11. The file header, Figure 3.10, is

located at the top of each file; whereas, each routine in the file contains the header shown

in Figure 3.11. Furthermore, structure charts and abstract data types are contained in

Appendices A and B.
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* DATE: mm/dd/yy of last change to this file
* VERSION: x.y where x represents new modules added or deleted and
* y represents changes within a module

* TITLE: Title given to this file. English title, not filename.
* FILENAME: Intended filename and extension.

* COORDINATOR: Who is responsible for this file.
* PROJECT: Name of the software project of which this file is a part.
* COMPUTER: If a special computer is required.

* OPERATING SYSTEM: Name and version number of OS under which this file
*was developed to run.
* LANGUAGE: Name and version of compiler or assembler under which this

* file was written.
FILE PROCESSING: How this file is used. Is it INCLUDED in another

* file? Is it compiled and/or assembled? What files
* must it be linked with? What compiler options must
* be specified?
* CONTENTS: What modules are contained in this file? Specify number and

* name. Include one line functional description.
* FUNCTION: Briefly, what is the overall function of this entire file?I .

I
Figure 3.10. Software Documentation File Header

I
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* DATE: mm/dd/yy -- date of this version
* VERSION: x.y where x represents new modules added or deleted and

* y represents changes within a module

* NAME: Program name -- English name

* MODULE NUMBER: Module number in current program.
* DESCRIPTION: Text description of the module's function.
* ALGORITHM: Algorithm used.

* PASSED VARIABLES: Variable name(in), (out), (in/out)
* RETURNS: Value returned by this module.
* PROTOTYPE: ANSI prototype for this routine.

* GLOBAL VARIABLES USED: Those read by this module.
* GLOBAL VARIABLES CHANGED: Those changed by this module.
* FILES READ: Files read by this module.

* FILES WRITTEN: Files written or appended by this module.
* HARDWARE INPUT: I/O ports or devices read.
* HARDWARE OUTPUT: I/O ports or devices written.

* MODULES CALLED: Other procedures or subroutines called.
* INCLUDED FILES: #include files
* local.h -- defines some commonly used variables

* AUTHOR: Person who wrote this version.
* HISTORY: Name, author, and date of earlier version.I* What changes were made?

* * ANALYSIS: Time and space complexity.

!*

Figure 3.11. Software Documentation Module Header
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3.6 Summary

This chapter has presented the detailed plan of attack, conducted the preliminary

design for the search algorithms as well as the preconditioning and reduction techniques,

analyzed the best and worst case execution, and finally described the hardware and software

used for the implementation. The preliminary design of the search algorithm identified a

method to employ for the parallel decomposition of the SCP. The data is partitioned using

a coarse grain algorithm with static allocation of the initial search tree and communication

with a central processor to transmit and receive the global best cost and covering sets. Par-

allel algorithms for the reduction techniques described in Section E.6.4 are also presented.

The next chapter contains a detailed design of the parallel SCP programs including the

* design of the dominance and lower bound tests.

I
U
I
I
I
I
I
I
I
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IV. Detailed SCP Program Design & Implementation

4.1 Introduction

The previous chapter discusses the research methodology and develops a preliminary

design for the construction of the SCP table and allocation of subbranches to searching

processors. The preliminary design of the SCP parallel programs contains two UNITY

metaprograms'. The first metaprogram is a serial branch-and-bound SCP and the second

metaprogram is a parallel branch-and-bound SCP. Many details remain before the design

is implemented; hence, this chapter contains a detailed design of the the algorithms for a

serial version and three parallel versions of the SCP.

Section 4.2 maps the UNITY metaprograms developed in Chapter III to the iPSC/2

hypercube and explains the algorithms and data structures which perform the search.

The remaining sections, Sections 4.3, 4.4, 4.5, and 4.6 explain the algorithms and data

structures for the dominance test, the lower bound test, the reduction techniques, and the

parallel bitonic merge sort.

4.2 Mapping of the Search Methodology

This section develops one last UNITY metaprogram and presents pseudo-code algo-

rithms for the serial and parallel versions of the SCP.

4.2.1 UNITY Mapping The UNITY metaprograms presented in Sections 3.3.2.2

and 3.3.2.3 characterize the SCP as a serial and a parallel search respectively. According

to Chandy and Misra's design methodology, the next step in the design process is to map

the UNITY program to a target architecture (iPSC/2 for this research) using program

schemas.

A mapping is "an architecture specific implementation of a UNITY program" mapped

to the following three architectures (16:82):

'As discussed on page 2-21, UNITY programs are not programs in the classical sense of the word. A
UNITY program is better thought of as a design representation of a program. The UNITY designs are
referred to as programs since this is the convention established by Chandy and Misra (16)

I
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Asynchronous shared-memory architecture - "Consists of a fixed set of processors

I and a fixed set of memories" (16:82).

Distributed systems - "Consists of a fixed set of processors, a fixed set of channels,

and a local memory for each processor" (16:83).

Synchronous architectures - Same as the asynchronous shared-memory architecture

with each processor sharing a common clock (16:84).

A program schema is "a restricted class of UNITY programs and associated mappings"

defined as follows (16:82):

Read-only schema - "A UNITY program an,. its mapping to an asynchronous shared-

memory computer is in the read-only schema if each variable in the program is

modified by (statements in) at most one processor. Programs in the read-only schema

can be executed on architectures in which each memory is written into by at most

one processor" (16:85).

Shared-variable schema - "A program and mapping fit the shared-variable schema if

each statement (allocated to a processor) names at most one nonlocal variable. The

nonlocal variable may appear on the left or the right side of the statement. This

implementation employs locks on shared variables. At most one processor holds a

lock on a shared variable at any time" (16:86).

Equational schema - "A program in the equational schema is a proper set of equations.

consisting of only the declare-section and the always-sections" (16:87).

Single-statement schema - "A program is in the single-statement schema if the assign-

section of the program consists of a single statement (which may be a multiple as-

signment) " (16:88).

Since this program is implemented on a cube-connected architecture, the mapping

is to a distributed system using a shared-variable schema. The parallel UNITY program

of Chapter III, Parallel Branch-and-Bound SCP, requires one modification to map it to

the iPSC/2. Recall that the previous UNITY program implements two global variables;
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namely, a global best cost (i) and the list of dominating sets (L). Since the iPSC/2 is

a distributed architecture, the global data structures are maintained and updated on a

single processor. Therefore, any updates to or information obtained from the global data

structures is accomplished over the iPSC/2 interconnection network. The global best cost

consists of a single integer; therefore, update and broadcast of i is not likely to create

a communications bottleneck. On the other hand, the list of dominating sets is updated

many times throughout the entire execution of the program and the list does not consist of

one integer as the global cost does, but may contain as many as n- 1 integers. The constant

broadcast of this information would quickly swamp the network. Therefore, to minimize

the communications overhead, each processor maintains its own list of dominating sets

based on its search and transmits/receives a globally maintained best cost.

The UNITY program on the next page maps the parallel branch-and-bound SCP to

a distributed, cube-connected architecture. The major modifications consist of removing

the global list of subsequences, seq, and assigning D to specific processors.

Specification of this mapping completes the UNITY design process. To recap, a

serial program is developed first as in Chapter III and is informally proven correct using an

invariant, a fixed point, and a progress condition. The serial program is then transformed

to a parallel UNITY program by dividing the input data structure among the processors.

An informal proof of the parallel version follows from the proof of the serial version.

And finally, the parallel program is mapped to a distributed computer in the previous

* paragraphs.

The previous chapter presents the preliminary design a parallel SCP algorithm based

on data parallelism. Typically, data parallelism divides the data between the processors

which execute essentially serial algorithms; hence, a parallel version of the SCP includes

many serial subroutines. To aid in the parallel implementation and to assist in testing,

a serial version of the SCP is designed and implemented first. Then, three successively

more complex versions of the parallel SCP programs are developed with each new version

utilizing the work accomplished in the previous version. The pseudo-code algorithms in

this chapter are supplemented by structure charts and ADTs contained in Appendices A

and B in accordance with the software engineering practices outlined in Section 1.5.
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Program Distributed System Parallel Branch-and-Bound SCP
declare

C[v] : int {cost of covering set v}
k : int {processor index}
lk int {calculated lower bound}
N : int {number of processors}
Vk int {general index variable}
Zk int {cost of the current state of the search on a processor}

: int {global best cost}
coverk : boolean {TRUE if a cover exists}
Dk : boolean {TRUE if a dominate set exists}
Lk :boolean {TRUE if lower bound is exceeded}
Iseqt set {starting state for processor k}
seqk set {current state of the search}

set {global best cover}
always

1 <k < N A 1 <v <n
zk = (+i : i E seqk :: C[i]) {Cost of the cover on processor k}
i Zk z~ if Zk< A coverk {Maintains a current global best cost}

(k :1 < k < N Iseqk 5 Iseqk+l)
(k : 1 < k < N :: seqk = Iseqk U seqk)
S =seqk if zk < i A coverk -. {Maintains the current best cover}

{Dominace test on processor k}
Dk(vk) = TRUE if seqk U vk is dominated by a previous seqk

FALSE

{Lower bound test on processor k}
Lk(vk) = TRUE if Zk + C[vk _ ik

FALSE
initially {Initialize all variables}

i=0 = 1 = null

11 (11k: I < k < N :: lk, Vk, zk, seqk O, top(seq)+ 1, C[seq], Iseqk)
assign

seqk, vt:

{Branch forward}
seqk; vk, Vk + 1 if zk + C[vk] < i A Foverk A

Dk(seqt; vk) A Lk(seqk; v1k)

I { Backtrack}
pop(seqk), top(seqk)+l if seqk # null A (zk + C[vk] > i V coverk V
I Final state) Dk(seqk; vk) V Lk(seqk; vk))

null, n if seqk = null A (zk + C[vk] > 2 V coverk V
Dk(seqk; vk) V Lk(seqk; vk))

End ( Distributed System Parallel Branch-and-Bound SCP}
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4.2.2 Serial SCP This section develops the pseudo-code algorithms for a serial

I implementation of the SCP. A high-level algorithm for the overall SCP search process is

presented first followed by an explanation of the various data structures and algorithms

m selected to complete the entire search process. The iollowing algorithm controls the general

search process (17:40-43):

Algorithm SCP
Read the 0-1 matrix
Reduce 0-1 matrix
m Reduction #1

Reduction #2
Reduction #3
Reduction #4

Construct the table
Search the table for an optimal solution

Dominance Test
Lower Bound Test

Display results
End SCP

m The structure charts for the serial SCP programs are contained in Section A.1 and

the abstract data types (ADTs) are given in Section A.2. The structure chart and ADT

for this particular algorithm are given in Figure A.1 and ADT A.10.

The first line in the SCP algorithm is a simple file input routine that reads the 0-1

matrix. The input file must contain the number of rows and columns in the matrix, the

matrix, and the costs of the columns. An example input matrix is shown in Figure 4.1.

The first seven rows comprise the file header and may contain any number of rows preceded

by #. The number of matrix rows (6) and columns (8) is read into the program variables

Nverts and Nsets respectively. These values are used to establish the base data structures:

AdjMat, Vertex, and Set. As the file is read, the base data structures are constructed.

AdjMat is a two-dimensional 0-1 matrix. Vertex and Set are the vertex and set vectors

shown in Figures 3.8 and 3.9 on page 3-25.

Each of these base data structures is dynamically allocated; hence, the programs

only allocate the amount of memory necessary to contain the data. Dynamic memory

allocation increases the flexibility of the programs by not constraining the size of the input
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i#

# Filename: dummy.dat
# Number of Vertices: 6
# Number of Sets: 8
# Density of l's: 0.416667
# Cost range: [2,8]

U 6
8
11000010
10100101
00001110

i 00010000
01001011
11100101
47583265

Figure 4.1. Input File Format for the SCP

problem and it decreases the amount of unused memory. Memory usage is a concern

because the node processors on the iPSC/2 contain limited memory, reference Table 3.1,

and no virtual memory. Since the C language is so intimately linked with pointers to

data structures (39), dynamic data structures referenced by pointers should not slow the

execution of the program. However, the control syntax is complicated. Figures 4.2 and 4.3

show the Vertex and Set data structures in C syntax.

#define VERTEX struct vertex-type
VERTEX {

int Index, /* The index into AdjMat. */
Card, /* The cardinality of the true vertex. */
Covered, /* Signals this vertex as covered. */
TrueVertex; /* The true vertex of the original AdjMat. */I 1;

* Figure 4.2. Language Defined Vertex Data Structure

Once the base data structures have been constructed, the reductions (Section 3.3.3)

are performed if requested by the user. Since the reductions are not required for the search

process, their pseudo-code algorithms are presented later in Section 4.5.

I
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#define SET struct set-type
SET {

int Index, /* The index into AdjMat. */
Cost, /* The cost of the true set. */
Used, /* This set has been need already. */
TrueSet; /* The true set of the original AdjMat. */

3 Figure 4.3. Language Defined Set Data Structure

#define TABLE-NODE struct table-node
TABLE-NODE /* The structure of one node of the table.

int Row, /* The row of Vertex. */
Col; /* The set of Set. */3 TABLE-NODE *Down, /* Pointer to the next block in the table.

*Right; /* Pointer to the right node in the table. */

I 1;

Figure 4.4. Language Defined Table Data Structure

U Following the reductions, the table must be constructed. The data structure for the

table was illustrated in Figure 3.3 on page 3-11 and the C syntax is given in Figure 4.4.

As with the base data structures, the table is also dynamically allocated and occupies only

the memory required. The following algorithm describes the construction of the table:

Algorithm Build Table
Point to the first row in the vertex vector
Build a block for each row in the vertex vector

Loop on the cardinality of this row
Construct a TABLEJODE for each column covering this row

End loop
Point to the next row

End for
End Build Table

Since the Vertex and Set vectors are sorted in ascending order and index into the 0-1

matrix, the construction of the table data structure follows a simple algorithm of building

a block for each row of the Vertex vector.

The following algorithm searches the table for an optimal cover and a structure chart

is given in Figure A.5:

I
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Algorithm Serial SCP Search
Present cost = cost of next set = 0, best cost = oo
Loop until done

Loop while all rows not covered and present cost + cost of next column < best cost
Look for the next uncovered row
Look for the next unused column in this block
If current state is dominated by a previous state

Exit loop (Backtrack)
End if
If lower bound of current state exceeds current cost

Exit loop (Backtrack)
End if
Save column on the stack
Update present cost
Mark the column and all rows covered by the column

End loop
If all rows are covered and present cost < best cost

Save the columns and cost (SOLUTION)
End if
Loop (BACKTRACK)

Pop a column off the stack
Remove the column from the solution and present cost
Mark the rows as UNCOVERED if not covered by another column

End loop
If the stack is empty, then the search is complete

Return the best cover
End if

End loop
End Serial SCP Search

Notice from the algorithm that a stack is used to store the current state of the search.

The structure chart for the stack is shown in Figure A.6 while a pictorial and syntactical

representation of the data structure is shown in Figures 4.5 and 4.6, respectively. This

* stack is a semi-generic stack constructed as a singly linked-list that points into the table

data structure.

I Aside from the reductions, the dominance test, and the lower bound test described

later in this chapter, the detailed design of the serial SCP algorithm is complete. The next

I section describes the algorithms and data structures for the parallel implementations of

the SCP.

4.2.3 Parallel SCP Three increasingly complex parallel SCP algorithms are devel-

oped in the following sections. Corresponding structure charts and ADTs are presented iii

Sections B.1 and B.2. The three versions of the SCP differ mainly in their load balancing

I 4-8
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Item Table Item

Next

I/

Item No Table Item

Next

Item Table Item

NULL

Figure 4.5. Stack Data Structure

#define SNODE struct s-node
S.NODE { /* The structure of a node in the stack. */

S.NODE *Next; /* Pointer to the next node in the stack. */
TABLE-NODE *Item; /* Pointer to a node in the table. */

Figure 4.6. Language Defined Stack Data Structure
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I
schemes. The first algorithm uses a static allocation of the initial search graph similar to

I the algorithms designed in Section 3.3.1. The initial graph is obtained by doing a breadth-

first expansion, by the searching processors, on the nodes of the graph until m subgraphs

have been developed where m is defined as the number of searching processors. The sec-

ond algorithm improves on the static allocation scheme by moving construction of the3 subgraphs to the controlling processor and dynamically assigning subgraphs to the search-

ing processors as they finish their current search. The final algorithm adds a dynamic load3 balancing scheme to the previous algorithm. In this version, the processors dynamically

share portions of their respective search graphs until every searcher terminates.

I The basic design of all three parallel algorithms designates one processor (the con-

troller) to control all other searching processors (the searchers). The interaction betweenI
the two processor designations is specified by the following algorithms:

Algorithm Generic SCP ControllerI Loop until all searchers finished
Poll receive buffer for new global best cost or searcher finished
If new global best cost

Extract the cost and cover from the received list
Compare the cost to the previous global best cost
Retain the cover and cost with the lowest cost
Broadcast new global best cost to all searchers

End if

End loop
Poll searchers for performance data
Send results to host processor

End Generic SCP Controller

I Algorithm Generic SCP Searcher
Loop until search complete

Poll receive buffer for a new global best cost
Search for a cover
If a cover found and its cost is less than global best cost

Transmit global best cost and cover to controller
End if
Continue search

End loop
Send performance data to controller

End Generic SCP Searcher

3 The controller continually polls its receive buffer for the presence of a new global

best cost and associated cover or for the termination of a searcher. In the course of its

4-10
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search, a searcher submits a global best cost and cover to the controller if it finds a cover

_ with a lower cost. The controller compares the new global best cost to the currently held

global best cost and retains the minimum cost and associated cover. It then broadcastsI the new global best cost to all searchers. The searchers, on the other hand, periodically

poll their receive buffers for a new global best cost. If one is received and it has a lower

I cost, the processor immediately updates its locally maintained copy of the global best cost.

When all searchers terminate, the controller polls each searcher for its performance data

Iand then sends the optimal cover, the optimal cost, and the performance data to the host

for display to the user.

-- On the iPSC/2 computer, it is difficult to provide a suitable user interface directly

with the node processors; hence, the node programs usually interface with a program

executing on the host processor (37:1-1). The host program contains the user interface,

loads the node processors with the proper version of the SCP algorithm and displays the

results. The following algorithm executes on the host processor and is common to all

parallel versions of the SCP:

Algorithm SCP Host
Read the matrix
Construct the base data structures: AdjMat, Vertex, and Set
Broadcast AdjMat, Vertex, and Set to the controller
Wait f-of the optimal cover and performance data to return
Display the results

End SCP Host

The host reads the input 0-1 matrix and builds AdjMat, Vertex, and Set. These

data structures are then transmitted to the controller for disposition. The structure chart3 in Figure B.1 illustrates the communication channels between this host algorithm, the

controller algorithms, the searcher algorithms, and the dynamic load balance algorithm.

3 The following sections detail the three parallel algorithms starting with the statically

allocated coarse grain algorithm, followed by the fine grain algorithm, and finally, the

3 dynamic load balanced parallel version.

3 4.2.3.1 Statically Allocated Coarse Grain Algorithms A statically allocated

coarse grain algorithm is developed first since it is the simplest to design and implement

I
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with much of the design developed and explained in the previous chapter. The structure

charts for the controller and searcher algorithms are contained in Figures B.3 and B.4 and

the ADTs are represented in ADTs B.18 and B.21.

Algorithm Statically Allocated Parallel SCP Controller
Receive Adjlat, Vertex, and Set from the host
Coordinate user requested parallel reductions
Sort the Vertex and Set records
Broadcast AdjMat, Vertex, and Set to the searchers
Loop until all searchers finish

If a better global best cost is received
Save new global best cost and covering set
Broadcast cost to all searchers

End if
End loop
Poll searchers for performance data
Send optimal covering set to host
Send performance results to host

End Statically Allocated Parallel SCP Controller

I The controller receives the base data structures from the host processor and then

coordinates the requested parallel reductions, sorts the Vertex and Set vectors, and sends

all data structures to the searchers. The parallel reductions are briefly explained in the

previous chapter and detailed algorithms are presented in Section 4.5. The sort algorithm

I performs a quicksort for small input records and a parallel bitonic merge sort (reference

Section 4.6 in this chapter) for large data sets. Once the initial processing of the data

I is finished, the controller enters a loop and waits for a searcher to finish or update the

global best cost. Notice that the controller algorithm does not build the table nor does it

partition any subbranches to the searchers. These tasks are performed by the searchers in

this first parallel implementation.

Each searcher receives the matrix from the controller, constructs the table, and exe-

cutes a breadth-first expansion until at least m subgraphs exist. Note that each searcher

performs the same steps so that all searchers contain copies of the matrix, the table, and

3 the list of subgraphs.

An algorithm for the breadth-first expansion is given on page 3-13 in Section 3.3.1.

The actual name of the expansion algorithm is BuildStartingSels as shown in ADT 13.27.

NodeStarlingSets computes the number of subgraphs for each searcher and NextStartingSel

I
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returns the next subgraph based on a searcher's processor ID (e.g., processor 0). All that

remains is to specify the queue data structures used by the expansion algorithms. A

structure chart and ADT for a semi-generic queue are given in Figure B.9 and ADT B.14.

The queue data structure is illustrated in Figure 4.7 and the C syntax in Figure 4.8.

Item Table Item

Next

Item Table Item

Next

Item -Table ItemI/ NULL

Figure 4.7. Queue Data Structure

#define QNODE struct q.node
Q_NODE { /* The structure of a node in the queue. */

Q_NODE *Next; /* Pointer to the next node in the queue. */
TABLE-NODE *Item; /* Pointer to a node in the table. */

Figure 4.8. Language Defined Queue Data Structure

When the expansion is complete, the searchers select predesignated subgraphs from

their list of subgraphs. Consider three searching processors and eight subgraphs developed

as a result of the breadth-first expansion on the search graph. The static allocation algo-

rithm executed by every searcher assigns subgraphs {1, 4, 7} to processor 1, subgraphs {2,

5, 8} to processor 2, and subgraphs {3, 6} to processor 3.
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The expanded subgraphs searched by a modified version of the Serial SCP Search

I algorithm described in Section 4.2.2. The parallel search utilizes a local and global best

cost to increase the number of nodes pruned from the search graph; hence, the serial search

I algorithm is modified to include send and receive operations for the global best cost. The

structure charts are given in Figures B.4 and B.8 and an ADT is given in ADT B.21. The

I following algorithm is executed by each searcher:

Algorithm Statically Allocated Parallel SCP Searcher
Participate in parallel reductions and sorts
Receive Adjat, Vertex, and Set
Build the table and list of subgraphs
Local best cost = global best cost = oo
For all designated subgraphs

Present cost = cost of next column = 0

Loop until done
Probe for a new global best cost

Update local best cost if received global cost is better
Loop while all rows not covered and

(present cost + cost of next column) < best cost
Look for the next uncovered row and unused column

If current state dominated by a previous state
Exit loop (Backtrack)

End if
If lower bound exceeded

Exit loop (Backtrack)
End if
Save column on stack, update cost, mark column and covered rows
Probe for a new global best cost and update if required

I End loop
If all rows covered and present cost < local best cost

Save the columns and cost (SOLUTION)
Send new best cost and cover to the controller

End if
Loop (BACKTRACK)

Pop a column off the stack
Remove column from solution and present cost
Mark the rows as UNCOVERED if not covered by another column

End loop
If stack is empty, then search is complete

Exit to search a ne% subgraph
Else

Advance to the next node in the search graph
End if

End loop
End for
Finished, tell controller and send performance data when polled

End Statically Allocated Parallel SCP Searcher

I
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As one might expect, the static allocation of subgraphs to each searcher is effective

I but inefficient. Run-time testing shows many searchers idle for extended periods of time

while waiting on a single searcher to finish its search. In other words, a load imbalance is

I occurring. The task now is to design a load balancing scheme that is more efficient than

this statically allocated scheme.

4.2.3.2 Fine Grain Algorithms Instead of allocating the subgraphs to the

searchers in advance, the parallel algorithm could assign a new subgraph to a searcher

as the searcher finishes its current subgraph. This dynamic allocation scheme distributes

the load more evenly between the searchers and results in an increased performance due

to a decrease in searcher idle time. This fine grain algorithm moves the construction of

the subgraphs from the searchers to the controller resulting in the following controller

algorithm:

I Algorithm Fine Grain Parallel SCP Controller
Receive AdjMat, Vertex, and Set from the host
Coordinate parallel reductions
Sort the Vertex and Set records
Broadcast AdjMat, Vertex, and Set to the searchers
Build the table and subgraphs
Send an initial subgraph to each searcher
If all subgraphs sent, tell all searchers
Loop until all searchers terminate

If a better global best cost is received
Save new global best cost and covering set
Broadcast cost to all searchers

End if
If more subgraphs exist and a sear~her requests another subgraph

Send a new subgraph to the requesting searcher
If all subgraphs sent, tell all searchers

End if
End loop
Poll searchers for performance data
Send optimal covering set to host
Send performance results to host

End Fine Grain Parallel SCP Controller

This control algorithm is obviously an enhanced version of the statically allocated

coarse grain control algorithm of the previous section. The controller now builds all the

subgraphs in advance and sends each searcher its first subgrapb. No coordination is re-

quired between the searching processors since the subgraphs are dynamically allocated
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from a central processor. When each searcher has received a subgraph, the controller loops

waiting for all searchers to finish, send a new global best cost, or request another subgraph.

The searchers' requests for additional subgraphs are processed on a first-come, first-served

basis and all searchers are notified when the list of subgraphs is depleted. Figure B.11

shows the structure chart for the fine grain controller algorithm and the ADT is given in

ADT B.20.

The previous expansion algorithms are modified to build the list of subgraphs and to

send each processor its initial subgraph. Build Initial Sets is the new expansion algorithm

(ADT B.27):

Algorithm Build Initial Sets
Put all TABLE-NODEs from Block 0 in the queue
Loop until every searcher has at least one subtree to search

Point to the first TABLEJODE in the next block
Extract a list off the queue
Loop for all TABLE.NODEs in this block

Append TABLE-NODE to list
Insert new list into the queue
Point to next TABLENODE in this block

End loop
End loop
For each searcher

Remove a subgraph from the queue
Encode the subgraph for transmission
Send encoded subgraph

End loop
Return queue to the controller

End Build Initial Sets

Notice that the steps which expand the table are essentially the same as those con-

tained in the Breadth-first Expansion algorithm on page 3-13, but that additional steps

have been added to provided an initial subgraph to each searching processor. Also, no-

tice that the subgraphs are encoded for transmission. The subgraphs are composed of

linked-list TABLENODEs which may not be contiguous in memory, but the iPSC/2 csend()

command only operates on contiguous blocks of memory. Therefore, the linked-list data

* structure is encoded such that the information is preserved and located in contiguous

memory. Figure 4.9 illustrates the encoded TABLE-NODEs.

When all searchers have received a subgraph, the algorithm returns the remaining

subgraphs in a queue to the main controlling process. It is also worth noting that the
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* Encoded Table 1

Table I RO

IBlockO0C
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Block 1
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lR21 C I CO Rest of the Table
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Figure 4.9. TABLEBODEs Encoded for Transmission
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above algorithm is easily changed to expand the subgraphs to any level (granularity) upto

I a complete breadth-first expansion by simply changing the first loop.

After the initial subgraphs are allocated, the controller waits for new global best costs

or requests for new subgraphs to arrive. Send Another Set sends subgraphs to requestingu searchers until all subgraphs are allocated (ADT B.27):

Algorithm Send Another Set
Remove a subgraph from the queue
Encode the subgraph for transmission
Send encoded subgraph to the requesting processor
Return queue to the controller

End Send Another Set

I This algorithm is obvioisly related to the previous algorithm in the way that it sends

subgraphs to the processors.

Algorithms now exist to send subgraphs to the searchers and the search algorithm

must be modified to operate in conjunction with the controller. As with the controller, this

fine grain search algorithm is an enhanced version of the previous statically allocated coarse

grain algorithms. Since construction of the subgraphs has been moved to the controller, the

searcher must now request a new subgraph whenever it finishes with its present subgraph.

The new searcher is described by the structure charts given in Figures B.12 and B.8, the

ADT in ADT B.23, and the Fine Grain Parallel SCP Searcher algorithm on the next page.

Once received, the searcher must decode the subgraph. The beginning section of the

SCP table is constructed from the TABLENODEs in the received subgraph by the following

algorithm (ADT B.28):

I Algorithm Build Table Segment
Loop for all rows in the encoded subgraph

Put the row from the array into the TABLE-NODE
Put the column from the array into the TABLE-NODE
Point this TABLE.ODE to new TABLE-NODE

End loop
Point the last TABLE-ODE to the table block corresponding to the next row

End Build Table Segment

I
4-18I



LI
I
I
I

Algorithm Fine Grain Parallel SCP Searcher
Participate in parallel reductions and sorts
Receive Adj~at, Vertex, and Set
Build the table

Loop while more subgraphs available
Receive and decode a subgraph from the controller
Loop until done search of subgraph is complete

Probe for a new global best cost
Update local best cost if received global cost is better

Loop while all rows not covered and
(present cost + cost of next column) < best cost

Look for the next uncovered row and unused column
If current state dominated by a previous state

Exit loop (Backtrack)
End if
If lower bound exceeded

Exit loop (Backtrack)
End if
Save column on stack, update cost, mark column and covered rows
Probe for a new global best cost and update if required

End loop
If all rows covered and present cost < local best cost

Save the columns and cost (SOLUTION)
Send new best cost and cover to the controller

End if
Loop (BACKTRACK)

Pop a column off the stack
Remove column from solution and present cost
Mark the rows as UNCOVERED if not covered by another columnI End loop

If stack is empty, then search is complete
Exit to search a new subgraph

I Advance to the next node in the search graph
End if

End loop
Request another subgraph from the controller and wait

End loop
Finished, tell controller and send performance data when polled

End Fine Grain Parallel SCP Searcher

I
I
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In the fine grain algorithms, the subgraphs are allocated to the searchers as they3 finish; hence, maximum idle time is reduced. However, since NP-complete searches are in-

homogeneous, it is difficult if not impossible to partition the subgraphs so that all searchers

I are searching for the same total length of time. Even though the individual searcher idle

times are reduced, searchers are still sitting idle following depletion of the expansion queue.

The ultimate algorithm is one that has all searchers searching for the same time, that

is, all searchers productively searching until the search is complete. Therefore, a scheme

is required that dynamically shares subsubgraphs between the searchers. Then, when all

subgraphs developed by the controller have been allocated and a searcher is finished, the

finished searcher requests a subgraph from any searcher still searching. The dynamic load

balancing algorithms of the next section accomplish this sharing of subsubgraphs.

4.2.3.3 Dynamic Load Balancing Algorithms This next version of the parallel

SCP algorithm is yet another enhancement of the previous algorithm(s). The fine grain

algorithm was an improvement over the statically allocated coarse grain algorithm; hence,

the dynamic load balanced algorithms developed in this section add dynamic load balancing

to the fine grain parailel algorithms.

I The dynamic load balancing version of the SCP begins as a fine grain parallel al-

gorithm and enters a dynamic load balancing process when all subgraphs have been dis-

tributed. Upon completion of the fine grain distribution of subgraphs, the controller trig-

gers the active participation of a separate process called the token process. The token

process exists on all processors and its only function is to coordinate the dynamic load

balancing scheme. A token, Figure 4.10, is circulated through all nodes in the cube and is

composed of a linear array of m integers where m is the number of processors in the user

acquired cube. The first integer in the token (Token[0]) denotes the number of searchers

still searching and is included to facilitate quick checking of the status of the search. The

remaining integers in the array are used by the searchers to indicate whether they are

working or idle and are set/reset by the searchers.

The token process operates differently on the controller than on the searchers; there-

fore. the algorithm for the token is presented in two parts. The first part follows the

I
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I Token[O] # Active Searchers

Token[l] Searcher 1

Token[2] Searcher 2

I
3 Token[N - 1] Searcher N - 1

I Figure 4.10. The Dynamic Load Balancing Token

controller algorithm since it resides on the control processor. The second part of the

algorithm follows the searcher algorithm for obvious reasons.

The Dynamic Load Balanced Parallel SCP Controller algorithm is a slightly modified

version of the fine grain algorithm presented in Section 4.2.3.2. The algorithm is presented

1 on the next page, the structure chart is contained in Figure B.11, and abstract data type

is represented in ADT B.19. Additional instructions are added to the Fine Grain Parallel

SCP Controller algorithm to initiate the token process whenever all the subgraphs have

been allocated to the searchers.

I The Token Controller algorithm, also shown on next page, simply examines the first

element in the token to determine if any searchers are still searching. If all searchers are

waiting for another subgraph to search (Token[O] = 0), the search is complete and the

token process notifies the searchers of the completion of the search. If any searcher is still

executing (Token[0] $ 0), the token is passed unchanged to the next node in the ring.

The fine grain parallel searcher algorithm requires much more modification than did

the controller algorithm to operate effectively in this dynamic load balanced parallel al-

gorithm. Not only does the searcher coordinate reception of a subgraph from the token

process, it must also partition its present subgraph for sharing with idle searchers. Further-

I
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Algorithm Dynamic Load Balanced Parallel SCP Controller
Receive AdjMat, Vertex, and Set from the host
Coordinate parallel reductions
Sort the Vertex and Set records
Broadcast Adj~at, Vertex, and Set to the searchers
Build the table and subgraphs
Send an initial subgraph to each searcher
If all subgraphs sent

Tell searchers to start dynamic load balance
Start the token

End if
Loop until all searchers terminate

If a new global best cost is received
Save new global best cost and covering set
Broadcast cost to all searchers

End if
If more subgraphs exist and a searcher requests another subgraph

Send a new subgraph to the requesting searcher
If all subgraphs sent

Tell searchers to start dynamic load balance
Fire the TOKEN

End if
End if

End loop
Poll searchers for performance data
Send optimal covering set to host

Send performance results to host
End Dynamic Load Balanced Parallel SCP Controller

I Algorithm Token Controller
Start the token when notified by the controller
While searchers still searching

If the controller has the token
If all searchers finished (i.e., Token[0] = 0)

Tell searchers to stop waiting
Else if a searcher needs another subgraph

Send token to neighbor
End if

End if
End while

End Token Controller

I
I
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more, the searcher token process is considerably more complex than the controller tokenU process since it must process requests for new subgraphs from its searcher as well as idle

searchers contained on other processors.

Since the search algorithm is more complicated, it is divided into a Searcher algorithm

and a Search algorithm. The Searcher algorithm obtains new subgraphs from the controller

or token a lgorithms and passes them to the Search algorithm. The following algorithm is

the Searcher algorithm. Its structure chart is illustrated in Figure B.13; while, ADT B.22

contains both the Searcher and Search algorithm ADTs.

Algorithm Dynamic Load Balanced Parallel SCP Searcher
Participate in parallel reductions and sorts
Receive Adjat, Vertex, and Set
Build the table
Loop while more subgraphs available from the controller

Receive and decode a subgraph from the controller
Search the subgraph

End loop
Request a subgraph from the token process
Loop waiting for a new subgraph from the token

If token requests a subgraph
Tell token I'm waiting for a subgraph

Else if token sent a new subgraph
Receive and decode the subgraph

End if
End loop
Loop while the size of the subgraph 6 0

Search the subgraph
Request a subgraph from the token process
Loop waiting for a new subgraph from the token

If token requests a subgraph
Tell token I'm waiting for a subgraph

Else if token sent a new subgraph
Receive and decode the subgraph

End if
End loop

End loop
Finished, tell controller and send performance data polled

End Dynamic Load Balanced Parallel SCP SearcherI
As stated, the algorithm begins as a fine grain parallel search and enters the dynamic

load balancing algorithm only when the controller has depleted its list of subgraphs. Notice

that this algorithm never communicates with other searching processors. Once the load
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balancing has been initiated, its only method of requesting and receiving new subgraphs

I is through the token process. Hence, control of the dynamic load balancing is maintained

in one process (token process) which is duplicated on every processor.

I The next algorithm describes the search for the optima! eover of a subgraph with

dynamic load balancing and its structure chart is contained in Figure B.13.

Algorithm Dynamic Load Balanced Parallel SCP Search
Loop until done

Probe for a new global best cost
Loop while all rows not covered and

(present cost + cost of next column) < best cost
Look for the next uncovered row and unused column

If current state dominated by a previous state
Exit loop (Backtrack)

End if
If lower bound exceeded

Exit loop (Backtrack)
End if
Save column on stack, update cost, mark column and covered rows
Probe for a new global best cost and update if required

I End loop
If all rows covered and present cost < local best cost

Save the columns (SOLUTION)
Send best cost and cover to the controller

End if
Loop (BACKTRACK)

Pop a column off the stack
Remove column from the solution
Mark the rows as UNCOVERED if not covered by another column

End loop
If stack is empty, then search is complete

Exit to search a new subgraph
Else

Advance to the next node in the search graph
If request pending to share a subgraph

Load balance
End if

* End if
End loop

End Dynamic Load Balanced Parallel SCP SearchI
The only difference between this search algorithm and the search located inside the

Fine Grain Searcher algorithm is that a call to the following Load Balance algorithm is

made if the token requests a subbranch for another searcher:
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Algorithm Load Balance
Search the stack for the highest block to be expanded
If a block is found as SHARED

Mark the block
Traverse the stack to the highest block
Send the subbranch starting at the highest block

Encode the subbranch and send to the token process
Return to the Search

Tell the token process, no subbranches available
End if

* End Load Balance

The load balance algorithm examines the current search stack for the highest block in

the table that can be expanded. In other words, it looks for the highest node in the search

tree that can be expanded. Consider the search tree in Figure 4.11. The current proccssor

is searching the subbranch starting at node 0; therefore, the subbranch starting at node I

is the highest node in the tree that can be expanded. The load balance algorithm searches

through the stack until it reaches node S. It then encodes the TABLENODE associated with

node 1 and sends it to the token process. The current search algorithm then resumes its

search. Realize, of course, that a certain amount of overhead is incurred by this algorithm

* in that the algorithm must search the stack and encode the subbranch for transmission.

The previous algorithms present the load balancing requirements levied on the search-

ing process; whereas, the following discussion concentrates on the token algorithm. As

previously stated, the token algorithm (page 4-27) resides as a separate process on all

processors and passes a token around the cube. The controller's token algorithm simply

examines Token [0] to determine if all searchers are finished; whereas, the token algorithm

must communicate with other token algorithms and raquest or transfer subgraphs.

The only token process that can poll for and receive a subgraph is the token process

currently holding the Token. A token process holding the Token and whose searcher is

idle traverses the elements of the Token looking for a working processor. When found.

the token process sends a request to the working processor's token process. If it receives

a subgraph back from the request, it passes the subgraph to its searcher and marks its

searcher as working in the Token. If, however, the token process polls all nodes and does
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not receive a subbranch, it remains idle iii the Token and the Token is passed to the next

token process.

Algorithm Token Process
Loop forever

If my searcher wants another subgraph
Tell controller to circulate the token

End if
If I have the token

If my searcher is idle
Mark my searcher as idle in the token
Loop until active searcher found and not all searchers idle

Ask the token process of an active searcher for a sul.,raph
If that searcher is also idle

Mark searcher as idle in the token
End if
Look for the next active searcher

End loop
If active searcher found

Receive subgraph from token process
Pass the subgraph to my searcher
Mark my searcher as active in the token

End if
Else my searcher is currently active

Pass token to token process on next processor
End if

Else if another token is asking for a subgraph
If my searcher is idle

Tell requesting token
Else

Ask my searcher for a subgraph
If my searcher responds with a request

My searcher is now idle
Tell requesting token

Send subgraph to requesting token
End if

End if
End if

End loop
End Token Process

If a token process does not currently possess the Token, it can not request subgraphs:

however, it must monitor the receive buffer for the presence of a request. If a request is

present, the requested toker process asks its searcher for a subgraph and waits for a reply.

The searcher returns a subgraph containing zero or more entries from the SCP table. The

requested token process relays this subgraph to the requesting token process. A subgraph
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containing more than zero SCP table entries is relayed by the requesting token process to

the idle searcher. A subgraph containing zero SCP table entries signifies no sharing and

and the requesting token process must poll other searching processors. As stated, the load

balancing algorithms are effective but do incur a certain amount of overhead. Even so, the

searchers are kept busy and the run-times indicate a decrease in the overall solution time;

I hence, the overhead is tolerable.

This design of the parallel SCP algorithms has progressed through three increasingly

complex parallel algorithms. The first algorithm is a statically allocated coarse grain

algorithm in which the searching processors expand the table and search predetermined

subgraphs. The coarse grain algorithm is then modified so that the table is expanded in

a central, controlling processor and the subgraphs are allocated as searching processors

terminate. This fine grain algorithm performs better than the coarse grain algorithm, but

run-time analysis indicates performance can be improved. Hence, a dynamic load balancing

algorithm is added to the fine grain parallel search algorithms. The dynamic load balancing

algorithms partition subgraphs currently being searched and share the subsubgraphs with

other idle processors. Of the three parallel implementations, the dynamic load balancing

implementation is the most efficient. The test data and results are presented in the next

chapter.

The search algorithms in the previous serial and parallel versions of the SCP indicate

the presence of a dominance test and a lower bound test. The details of these tests are

explained in Sections E.6.6 and E.6.7 but the algorithms are not given. The following two

sections present the algorithms for each test.I
4.3 Dominance Testing

An explanation of the dominance test is given in Section E.6.6 on page E-13. Basi-

cally, the dominance test compares the rows currently covered (E) plus the rows covered

in the next covering column (St) against a list of previously saved, covered rows (Ep). If

E u S4 C EP and Z + ck > zr the algorithm can immediately backtrack since the addition

of Sj can not result in a better cover than already obtained (17:44-45).

4-28



I
I

As the search progresses, the E's are saved in a matrix, L, for future comparisons.

Figure 4.12 represents a two dimensional, linked-list matrix indexed according to cost (Zi).

I
L

I LZI.NODEs EL-NODEs

int Zi mnt *Ep n*E

--w ELNODE *El int lEpi int IEpj

int NE ELNODE *NxtEL NULL

LZINODE *NxtLZI

ant Zi int *Ep

ELNODE *E int VEpe

int NE NULL
LZI-aNODE *NxtLZI

IF Typical Array
i int Zi _ int *Ep Vertex0

ELNODE *El int JEpj Vertex1

int NE| NULL Vertex2

I NULL

1 VertexN

i Figure 4.12. L Matrix for the Dominance Test

3 The matrix index or rows are constructed from LZI-NODEs which are records containing the

cost of the covered rows (Zi), a pointer to an EL-NODE (*El), the number of ELNODEs in this3 'row' of the matrix (NE), and a pointer to the next LZINODE (*NxtLZI). The individual

elements of the matrix are ELNODE records containing a pointer to an array of covered
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vertices (*Ep), the cardinality of the array (IEpl), and a pointer to the next ELJJODE

(*NxtEL). Figure 4.13 shows the C syntax for the matrix LZIJODEs and ELNODEs.

#define LZINODE struct lzi-node
LZINODE {

int Zi; /* Cost of all subsets in this LZINODE. */
EL.NODE *El; /* Pointer to an ELNODE. */
int NE; /* Number of ELNODEs attached to an LZILNODE. */
LZINODE *NxtLZI; /* Pointer to the next LZINODE. */

#define ELNODE struct el-node3 EL-NODE {
int *Ep; /* Pointer to the set of vertices. */
int 1Epj; /* Number of covered vertices in Ep. */
ELNODE *NxtEL; /* Pointer to the next ELNODE. */

I Figure 4.13. Language Defined L Matrix Data Structures

I Rather than a separate structure chart, the dominance test routines are presented as

subroutines in Figure A.5. A separate abstract data type is presented as ADT A.2. The

dominance test is a serial routine and all versions of the SCP (serial or parallel) are capable

of executing it. Although it is possible to maintain a global list of dominating sets, the

I number of communications required to keep the global list current prohibits an efficient

parallel implementation on a distributed computer architecture such as the iPSC/2.

The dominance test algorithm searches the L matrix between the cost of the current

state (z) and the cost of current state plus the cost of the next column chosen to add to the

cover (z + c). If a subset is found, the algorithm returns TRUE signifying a dominating set

exists and that the search algorithm should backtrack. Else, no dominating set is found

and the algorithm should proceed forward. If no dominating set is found, E U Sk is added

to L for use in future comparisons. If L is allowed to grow without bounds, the overhead

associated with searching L for a dominating set becomes prohibitive and slows the overall

search for an optimal covering set; therefore, the number of ELNODEs allowed in any one

'row' of L is constrained. Each new EL-NODE added to a row of L is inserted into the front
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of the current EL.JODEs and the number of elements (NE) is incremented. If NE exceeds

I some predetermined threshold, the EL-NODE at the end of the row is dropped.

Algorithm Dominance Test
Make the E and E U Sjk sets
Search L between z and z + cj for a subset of E U Sjk

If subset found
Dominating set exists (BACKTRACK)

Else if z + c not present --# no dominating set found (CONTINUE)
Create a new LZI-ODE of cost z + cj

Add EUS toLatz+c 1
Else found a matching z + c2 -- no dominating set found (CONTINUE)

Add EUSj at z+cj inL
If NE exceeds threshold

Remove EL.IODE at end of this row
End if

End if
End search

End Dominance Test

3 For the purposes of the complexity analysis, let Zma be the maximum cost row

inserted into L and MAXEL be the threshold value for removing EL-NDEs. In the worst

case, the entire L matrix must be searched; therefore, O(Zm ax) time is required to traverse

the rows and O(MAXEL) time is required to traverse at all elements in a row for a worst

case time complexity of O(Zmax X MAXEL).

For the space complexity analysis, let SLZI represent the size of an LZI.NODE and

I SEL represent the size of an ELNODE. The space required to contain L is simply the

product of SLZI, SEL, MAXEL, and Zmax times the number of vertices stored in each

I array pointed to by the EL.JODE. Hence, the space complexity of this dominance test is

O(SLZI X SEL X MAXEL x Zmax X Nverts).

This completes the algorithm and complexity analysis for the dominance test. A

* similar development follows for the lower bound test in the next section.

3 4.4 Lower Bound Testing

The lower bound test computes a lower bound, h, based on the current state (B',

3 E', z', k, i) where:

I
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B' - the list of covering columns.
E- the rows covered by B'.
z' - the cost of B'.
k - the next column chosen to add to B'.3- the cost of the best solution found so far.

The lower bound is the lowest possible cost to proceed down the path which includes B'

Iand k. If z' + h > ; then the search algorithm backtracks since a better solution is not

obtainable down this path.

IThe lower bound is calculated with a dynamic program which iterates over equa-

tion E.5:I gp(v) =,max [dp. + gp-1(v - d'
s=I,...,fP

where "%(v) is the maximum number of elements that can be covered using only the firstIp rows of D and whose total cost does not exceed v" (17:45). The construction of D,

and a companion matrix D', is described in Section E.6.7 along with a more complete

Iexplanation of the lower bound test.

The structure chart for the lower bound test routine is shown as part of Figure A.5

and ADT A.5 is the corresponding abstract data type. Since the lower bound test depends

solely on local information, it is implemented as a serial algorithm and all versions of the

SCP are capable of executing it. A detailed algorithm is presented followed by an order-of

*analysis.

Algorithm Lower Bound Test
Make D and 1' matrices
Compute the lower bound, h

go(v) = 0 for all v
For each row in D and D' starting at p = 0

g,(v) = 0 upto thc first cost in D'(p)
Compute the next gp(v)

gp(v) =.max [dp, + gp-(v - d',)]

End for
In the last gp(v), find v such that 0 < v < z
h = v, the lower bound

If z' + h> i
BACKTRACK

Else

CONTINUE to search
Endif

End Lower Bound Test

I
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An analysis of the algorithm indicates that the lower bound test creates two matrices,

D and D', for the duration of the test. In the worst case, these matrices contain Nverts- 1

rows and Nverts columns resulting in a space complexity of O(Nverts2 ). On the other

hand, the array containing gp(v) contains . - z elements. Hence, the space complexity

for the lower bound test is O(max[Nverts2 , . - z]). The time complexity of the lower

I bound computation requires O(Nverts2) to construct the D and D' matrices, O(i - z) to

construct gp(v), and O(Nverts) to iterate over all rows in D. The time complexity is then

I O(Nverts2 + Nverts x (-; - z)).

The final SCP algorithms to be designed are the serial and parallel reductions in the

next section. Since both serial and parallel versions of the SCP are implemented, it is

necessary to design both serial and parallel reductions. Furthermore, in keeping with the

design process in this research, the serial reductions are designed first and then modified

* to implement the parallel reductions.

4.5 Reduction Techniques

This section presents the algorithms and order-of analysis for both the serial and

parallel reductions. The structure chart and ADTs for the serial reductions are given in

Figure A.2, ADT A.8, and ADT A.9; whereas, the structure chart and ADTs for the3 parallel reductions are given in Figure B.7, ADT B.11, and ADT B.16. No new data

structures are required to implement the reductions and, except for Reduction #1, all

3 reduction algorithms mark the rows and columns to be removed using the Vertex and Set

vectors. Separate routines are then invoked to remove the marked rows and columns from

3 the 0-1 matrix (AdjMat) and the Vertex and Set vectors.

4.5.1 Reduction #1 Reduction #1 looks for a row with no cover and is performed

while the input file is being read. The analysis of the algorithm indicates an 0(1) time

complexity.

4.5.2 Reduction #2 Reduction #2 looks for all rows covered by one column. This

reduction could benefit from a parallel implementation provided many rows are covered by

I
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only one column. Such an occurrence is unlikely ; hence, a parallel version of this reduction

is not designed. Thus, the following algorithm describes a serial search for rows covered

by a single column:

Algorithm Reduction #2
For all rows

If the cardinality of a row is 1

Find the column covering the row
Save the column covering the row
Mark the column for removal
Mark all rows for removal which are covered by the marked column

End if
End for
Remove all marked rows
Remove all marked columns

End Reduction #2

3 The algorithm looks for all rows that are covered by one column. It saves the column

for later inclusion into the optimal solution and marks it for removal. All rows that are

covered by this column are also marked for removal. Separate routines then remove the

rows and columns from the Vertex vector, the Set vector, and AdjMat.

The worst case time complexity requires a search of all rows in the Vertex vector to

find the rows covered by one column and and then a search of all columns. If N represents

3 the number of rows and S represents the number of columns, the time complexity is

O(N x S). No additional data structures are created; therefore, the space complexity is

3 0(1).

3~4.5.3 Reductions #3 and #4 Reductions #3 and #4 remove dominated rows and

columns; hence, a search is required to find and mark the dominated rows and columns.

* Given that the entire matrix is searched in the process of finding dominated rows or

columns, these two reductions could benefit from a parallel implementation of the search.

3 The search algorithms for both reductions are closely related; therefore, only Reduction #3

is presented.

3 The following algorithm is a serial version of Reduction #3 from which a parallel

version is later derive:

4-34I



Algorithm Serial Reduction #3
Start at the first row (ThisRow)
NextRow = ThisRow + 1
For all rows in Vertex

If cardinality of NextRow < cardinality of ThisRow
If NextRow C ThisRow

Mark ThisRow for removal
Select another row for ThisRow

Else
Select another row for NextRow

Else the cardinality of NextRow > cardinality of ThisRow
If ThisRow C NextRow

Mark NextRow for removal
Select another row for NextRow

End if
I End for

Remove marked rows
Renumber Index fields in the Vertex vector

End Reduction #3

The algorithm continually selects unmarked rows for comparison with other un-

3 marked rows. If 'ThisRow' is dominated by 'NextRow', then 'ThisRow' is marked for

removal and the pointer set to the next unmarked row. If 'NextRow' is dominated by

3 'ThisRow', then 'NextRow' is marked for removal and the pointer set to the next un-

marked row. In this manner, the algorithm compares all rows. When all dominated rows

are marked, a separate routine removes the marked rows and renumbers the Index fields

of the remaining records in the Vertex vector. The removal algorithm removes rows in the

matrix by moving blocks of memory. In other words, a row R is removed by shifting the

following rows, R + 1 -- R + N, into the memory location previously occupied by R.

* The search for the dominated rows requires

N(N -1)

2

comparisons and the removal of the vertices requires

N+SN

memory moves where N, represents the number of vertices to be removed. The order-of is

then N(N - 1)+N SN

2
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The parallel reduction algorithm is a modified version of the serial algorithm. In the

following algorithm, MyNID is a node processor's identification number.

Algorithm Parallel Reduction #3
Give each node the matrix
Divide the vertices equally among all nodes
For each node

Receive a list of vertices to search
Find the dominated vertices (serial search)
Iterate cube dimension times

If MyNID A 2 Iteration $ 0
Send list of vertices to node MyNID e 2 Iteration
Abort iterationIElse Receive list from node MyNID V 2 Iteration
Find the dominated vertices (modified serial search)

End if
End iteration

End for
Remove marked vertices
Renumber index field in the vertex record

End Reduction #3

The controller sends all processors an equal portion of the Vertex vector and keeps

a portion for itself. The initial vector is searched for dominated rows using the serial

3 reduction algorithm previously presented. When a processor has completed its search, it

passes or receives a list of vertices to/from a neighbor. For example, in a cube consisting

of eight nodes, node 1 sends to node 0 (1 - 0), 3 -* 2, 5 - 4, 7 - 6. Nodes 0, 2, 4,

and 6 then execute the search algorithm again and send their lists in the following manner:

6 - 2, 4 --* 0. Finally, nodes 0 and 2 execute the search again and combine in the following

manner: 2 --+ 0. The process is executed d times where 2 d is the number of nodes in the

cube. The marked copy of the entire Vertex vector is now in node 0 where the rows are

removed. The advantages of this parallel algorithm is that at each iteration, the node

processor only compares unmarked rows on 2d equal parts of the Vertex vector are being

examined simultaneously.

The complexity analysis follows from the previous analysis. Each of the 2 d processors

receives an equal portion of the Vertex vector; hence, each processor receives N elements.

I
I
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The initial comparison of the rows requires

* 2

comparisons. The second iteration requires

I(N)2

I comparisons and the dth iteration requires

2 [(d-2) (N)]2 =N2

comparisons. The removal of the vertices is still accomplished by one processor and is the

same as in the analysis of the serial reduction. Therefore, the time complexity for the

* parallel reduction is N2

N +N -+-SN,

This completes the design and analysis of the reduction algorithms. The last section

explains the parallel sorting algorithm implemented for this research.

4.6 Parallel Bitonic Merge Sort

Sorting is a common activity in many algorithms and the SCP algorithms are no

exception where the Vertex and Set vectors are sorted to improve the efficiency of the

search algorithm. Many sorting algorithms have been designed and implemented on parallel

computers; hence, parallel sort algorithms are easily obtained (16, 25, 50). The parallel

sort employed in the SCP is an enhanced version of a bitonic merge sort obtained from

Quinn (50:93-94). This version of a bitonic merge assumes 2d items are sorted in ascending

order on 2d processors. The bitonic merge designed for the parallel SCP algorithms sorts

I any size input data in either ascending or descending order on 2d processors.

There are two algorithms required to implement the parallel sort. The controller

algorithm performs a check on the number of items to be sorted and tells the rest of the

I
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processors the type of sort to be performed (serial or parallel). The serial sort is a quick

-- sort and is included to improve the overall efficiency of the sorting package. The quick

sort is executed if the number of items is less than some empirically determined threshold.

In the case of a parallel sort, ne controller partitions the data such that every processor,

including the controller, is assigned a near equal portion of the data. If the number of

items is divisible by 2d, then all processors receive an equal number of items; otherwise,

the lower addressed processors receive one additional item and the other processors pad

I their data with a user supplied pad value.

When all processors have received their list of items, a parallel bitonic merge sort is

executed synchronously between 2 d processors. After d iterations, each processor contains

a portion of the sorted list of items. The controller algorithm now collects the lists from

the other processors and removes any padding according to a user supplied function.

The structure charts for these two algorithms are contained in Figures B.6 and A.3,

and the abstract data type in ADT B.10. For the following control algorithm, let N repre-

sent the number of elements to be sorted, MyNID represent a node processor's identification

number (0 < MyNID < 2d - 1), and d represent the dimension of the cube.

I
Algorithm Parallel Sort Controller

If N < THRESHOLD and MyNID == CONTROLLER
Do a quick sort and tell the other processors

Else
If MyNID == CONTROLLER

Tell the other nodes to do a parallel sort
Divide items between the processors

Participate in a parallel bitonic merge sort
Receive sorted sublists from the other processors
Remove padding if input list not divisible by 2 d

Return sorted itemsI 
Get a portion of the input list
Pad list if received portion not divisible by 2 d

Participate in a parallel bitonic merge sort
Send the sorted sublist to the CONTROLLER
Return

End if
End if

End Parallel Sort Controller

I
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The above algorithm controls the actual bitonic merge sort described in the following

I algorithm:

Algorithm Parallel Bitonic Merge Sort
Sort the initial list (quick sort)
For i = 0 to d - 1 do

For t = i downto 0 do
d= 2t

If (MyNID mod 2 x d) < d then
Receive a new bArray from node MyNID + d
Merge aArray and bArray (merge sort)
if (MyNID mod 2'+2 < 2+1) and sort DESCENDING

bArray is the max half of the list
aArray is the min half of the list

Else if (MyNID mod 2'+2 >= 2'+1) and sort ASCENDING
bArray is the min half of the list
aArray is the max half of the list

End if
Send bArray to node MyNID + d

Else
Send aArray to node MyNID - d
Receive bArray from node MyNID - d

End if
End for

End loop
End Parallel Bitonic Merge Sort

I Rather than explain the process of the bitonic merge sort, the reader is referred to

Quinn (50:81-106). If N is the number of items to be sorted and is divisible by 2d, each

processor receives N/2d elements. For a cube of dimension d, the inner instructions execute

d(d + 1)
2

times and the merge sort moves
2N

items during each iteration. Since the algorithm is synchronous, all nodes must wait for

the merge sorts to complete. Hence,

k~d2 J 2d
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items are moved during the algorithm. Additional space is required during execution to

maintain two arrays (aArray, bArray) of size 2 + 1; therefore, the space complexity is

4.7 Summary

This chapter has presented detailed designs and analysis for a serial and three parallel

SCP algorithms in Sections 4.2.2, 4.2.3.1, 4.2.3.2, and 4.2.3.3. Furthermore, algorithms for

the SCP dominance test, the SCP lower bound test, the SCP reductions, and a parallel

bitonic merge sort are presented in Sections 4.3, 4.4, 4.5, and 4.6. The design process

throughout has been to develop a simple serial algorithm and then conduct a parallel

* decomposition to derive a parallel algorithm.

The serial SCP algorithm is presented first. It is a slightly enhanced version of the

branch-and-bound algorithm presented by Christofides (17:41-42). A parallel decomposi-

tion of the serial algorithm is accomplished to develop the parallel algorithms. A common

control structure is employed for all parallel SCP algorithms; namely, a controller acts as a

central memory where the searching processors submit their best cost cover. The controller

evaluates the new covers, keeps the best, and broadcasts a global best cost to all searchers

which then use the global best cost to further prune their search trees.

* A parallel version of the serial algorithm is presented based on a coarse grain de-

composition of the search tree. In the coarse grain algorithm, the searching processors do

most of the work since they must build the initial subgraphs and then select predetermined

subgraphs to search. Run-time analysis reveals that many of the processors are idle during

much of the search; therefore, a better method of load balancing is developed.

The coarse grain algorithm is modified by placing the building of the subgraphs at

the controller and then partitioning subgraphs to the searching processors. When the

searchers finish their subgraph, they request new subgraphs from the controller. When

the controller's list of subgraphs is depleted, the searching processors remain idle until all

searchers have completed. Again, run-time analysis reveals a load imbalance though not

as great as with the coarse grain algorithm. Since a load imbalance still exists, a dynamic

I
4-40

I



I

load balancing algorithm is designed.

The dynamic load balancing algorithm adds a dynamic load balancing process to the

previous fine grain algorithm. Now, when the controller depletes its list of subgraphs, it

triggers a token which starts the dynamic load balancing process. The token traverses the

cube through all processors. If a searcher is idle, it informs its dynamic load balancing

(DLB) process and waits for a response. The DLB process waits for the token to arrive

and then checks the token for working processors. The working processors are polled until

all refuse to send a subgraph or a subgraph is received by the requesting DLB process. The

received subgraph is sent to the requesting searcher and the token is passed to the next

processor in the ring. Each time the controller receives the token, iL checks the number of

processors still working. If all processors are idle, the search is complete. This final parallel

version of the SCP proves to be the most efficient according to the run-time analysis.

Following the design of the parallel SCP algorithms, algorithms for the dominance

test, lower bound test, and parallel reductions are presented. The dominance test and

lower bound test algorithms are serial. The dominance test is serial because the huge

volume of communications required to keep global L matrix up to date would quickly

swamp the interprocessor network. The lower bound test is serial because it depends on

local information. Serial algorithms for Reduction #1 and 2 are presented along with a

* parallel algorithm for Reduction #3.

The final section presents an algorithm and analysis for a parallel bitonic merge sort.

Since sorting is an integral part of the SCP algorithms and parallel computers are efficient

sorters, a parallel sort increases the overall efficiency of the parallel SCP search algorithms.

I This completes the design and analysis of the algorithms for a parallel implementation

of the SCP started in Chapter II. The next chapter discusses the performance metrics,

the test cases, and the test results obtained from executing the algori'hms designed in this

chapter.
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V. Results

5.1 Introduction

The previous two chapters present the design of the serial and parallel SCP programs.

The design of the parallel programs led to three increasingly complex algorithms: coarse

grain, fine grain, and dynamic load balanced. The coarse grain algorithm is developed first

and tested to assess its performance. The tests show many processors idle during much

of the sea-ch. This idle-time is unacceptable for this research; hence, the coarse grain

algorithm is modified and a fine grain algorithm is developed. The fine grain algorithm

exhibits less overall idle-time; hence, it is more efficient than the coarse grain version.

However, the maximum idle-time (the difference between the first terminating searcher and

last terminating searcher) is still measured in minutes; hence, the dynamic load balanced

algorithm is developed and tested. The dynamic load balanced algorithm adds a dynamic

load balancing or sharing to the fine grain algorithm. The result is an efficient parallel

SCP implementation with individual processor idle-time measured in seconds.

The development of the three parallel algorithms is based on idle-time observed3 during execution. The purpose of this chapter is to discuss the data gathered during

execution of the algorithms. Section 5.2 discusses the performance metrics gathered during

the run-time testing of the parallel algorithms. The test plan and input test cases are

discussed along with a discussion of the program used to generate the test cases, Section 5.3.

3 The results of the test are presented in Section 5.4 with the tabulated results contained in

Appendix D. This chapter does not interpret the results, it simply explains how they were

generated and how to read the tables. The interpretation is left to Chapter VI.

3 5.2 Performance Metrics

The purpose of this section is to define a set of performance metrics for evaluating

3 the efficiency and effectiveness of the SCP algorithms. The selection of a 'good' set of

performance metrics is difficult because the collection of too much data could adversely

3 affect the program's efficiency and, if too little data is collected, an interesting observation

might be missed.
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A list of general performance metrics are presented on page 3-3 of Chapter III and

I are expanded here to address their use in the SCP programs.

Total Program Execution Time - Total execution time for the SCP program. The

total program execution time is of interest since this measure includes all processing

* and communications time.

Search Time - Time the algorithms actually spent searching. Does not include time to

I build the table, sort the data, and so forth. The majority of this time is expanding the

search tree; although, the time to send and receive global best costs is also included.

I Expanded Nodes - Number of nodes expanded in the search tree by each searching

processor. In the dynamic load balanced version of the SCP, this metric includes the

additional nodes a processor expands because it received a subgraph from another

processor. This measure is a useful indication of the extent to which the search tree

was expanded.

Processor Idle Time - Time the searching processors spend waiting for data to search.

In general, the most efficient search occurs when all processors are equally productive.3 In other words, each processor is productively searching various subgraphs. There-

fore, this metric is useful in determining the relative productivity of each processor.

* Minimum Solution Time - Program execution time until the optimal solution was

first found. As the processors search, they submit proposed optimal solutions to the3 controller. The faster the optimal solution is found, the faster it can be used to bound

the search tree on all processors. In the SCP programs, this metric is identified as3 the time until the best cover was first found.

Global Best Cost Broadcasts - Number of times the global best cost is broadcast to3 the searching processors. This metric is a relative measure of the communications

traffic between the controller and the searching processors. It could indicate potential

I communications bottlenecks.

Support Time - Time to sort the input data, build the table, and execute any re-

ductions. Many of the support routines are parallel; hence, these times allow a

I
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comparison between the serial and parallel algorithms. The SCP programs report

I these times separately.

Search Efficiency - Sum of the individual processor search times divided by the product

of the total program execution time and the number of searching processors. This

metric is a percentage representation of the overall processor search efficiency.

Speedup - Execution time of the best serial algorithm divided by the execution time of

the parallel algorithm. This metric is a standard by which many parallel algorithms

are judged. It represents whether a parallel implementation is taking full advantage

3 of the additional processing power available in a parallel architecture.

Load Balance Time - Total time each processor spent developing subgraphs to share3 with idle processors. Although the load balancing algorithm is important, if it re-

quires too much time to partition the subgraph, any potential speedup could be

3 lost.

Search State - The state of the search at each node in the search tree. This metric is

i useful in studying the expansion of the search tree on each searching processor. Since

the memory on the node processors is limited, this metric is not implemented in the

current algorithms, reference Section 6.5.

3 This list of metrics is sufficient to measure the efficiency and effectiveness of the SCP

algorithms. Other metrics are available, such as the number of search tree nodes shared or3 passed across the network, number of times the dynamic load balancing token traversed

the cube. However, it is pointless to collect such metrics unless they contribute to the

interpretation and use of the programs. All of the above metrics, excluding the Search

State, are available in the SCP algorithms. Based on these metrics and the available SCP

program options, reference Appendix C, a test plan is developed to test the serial and

parallel SCP programs.

5.3 Test Plan

Figures 5.1 and 5.2 show the help screens available by typing scp on the command

line (ref. Appendix C for an explanation of the various command line arguments). The
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test plan validates the correct operation of each user selectable option in isolation and in

concert with other options. Following the test of the options, the efficiency and effectiveness

testing of the search algorithm in the two serial and three parallel programs is discussed.

I SERIAL SET COVERING PROBLEM (SCP) HELP SCREEN

>scp [r234dlats] File

I Options available:
r - Enable all reductions.
2 - Enable reduction #2.
3 - Enable reduction #3.
4 - Enable reduction #4.
d - Enable dominance testing.

1 - Enable lower bound testing.
a - Print the 0-1 macrix.

t - Print the table.
s - Save the reduced/reordered 0-1 matrix to a file.

Figure 5.1. Serial SCP Help Screen

The effectiveness of the various algorithms is judged mostly be comparison. That is,

a set of test problems are searched with all versions of the SCP and the results compared.

Certainly not a proof that the algorithms work, but a good indicator. As discussed in

Section 3.5.2, the serial SCP routines are developed on a personal computer using Turbo C3 which includes an integrated debugger. Turbo C's debugger is used to monitor the op-

eration of the serial routines; hence, the serial version of the SCP and its routines were

3 closely observed in a glassbox environment. Furthermore, the serial version of the SCP

is the simplest version developed. For these two reasons, glassbox monitoring and simple

m search, the solutions derived from the serial SCP are considered correct.

Eluded to in the previous paragraph is the existence of a set of test matrices. Twenty-

3 four such matrices are generated with a matrix generation algorithm called gentable.

Gentable prompts for the number of rows and columns, the density of the matrix, and

m the range of the costs. The l's and O's are randomly generated according to the specified

density where the density is defined as the number of l's divided by the total number of
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PARALLEL SET COVERING PROBLEM (SCP) HELP SCREEN

>scp [AlgorithmIOptions] Searchers File

AlgorithmlOptions:
C - Runs coarse grain SCP program -- GOOD.

F - Runs fine grain SCP program -- BETTER.
D - Runs dynamic load balanced SCP program -- BEST (default).

S - Force a serial sort in the parallel search.
P - Force a parallel sort in the parallel search.
r - Enable all reductions.
2 - Enable reduction #2.
3 - Enable reduction #3.
4 - Enable reduction #4.

d - Enable dominance testing.

1 - Enable lover bound testing.
n - Print individual node statistics.
a - Print the 0-1 matrix.
t - Print the table.
s - Save the reduced/reordered 0-1 matrix to a file.

m Searchers:
Number of searching processors = 0---7(default).

S0 - Serial SCP program on one node.

Figure 5.2. Parallel SCP Help Screen

I
I
I
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matrix elements. Following generation of the 0-1 matrix, the costs are randomly generated

between the user specified range. These matrices are searched with the serial SCP program

and the optimal solutions tabulated in Table D.1. The table contains a total of twenty-nine

matrices since matrix 2020 has four versions which were generated by gentable and then

modified to test a particular characteristic of the algorithms. For instance, 2020v2 has two

rows which are covered by only one column. This particular matrix tests the effectiveness

of reduction algorithm #2 and the search algorithm in the absence of the reduction.

As stated previously, these test matrices represent examples in which all versions

of the SCP performed effectively. This does not prove that the algorithms will perform

correctly in all instances; however, since all algorithms return the same optimal cost for all

test cases, the algorithms are assumed to be correct. The testing of the program options

is presented in the following sections.

I Reduction Testing The effectiveness of the serial SCP reductions is checked by in-

serting known problems into the algorithm and then observing the reduced output. The

I known problems contain an example problem from Christofides (17:54), a matrix contain-

ing rows covered by only one column, a matrix containing columns with only one element,

I a matrix containing all l's on the diagonal, and a unit cost matrix. The serial SCP pro-

gram returns the correct reduced matrix for the known problems; therefore, the remainder

I of the test matrices (solutions unknown) are reduced. The results from the serial SCP are

considered correct and are compared against the results from the parallel algorithms. All

I versions of the parallel programs execute the same reduction algorithms; therefore, only

one parallel SCP algorithm is tested to compare its reduced matrices against the serial re-

I duced matrices. The results indicate that both the serial and parallel reduction algorithms

produce the same reduced matrix.

The efficiency of the reductions refers to the serial reduction time versus the parallel

reduction time. The serial SCP algorithms are executed with the reductions enabled on a

large (100xlOO) matrix. The same input matrix is tested with the parallel SCP programs

and the results are reported in Table D.2. The table shows the time to reduce the matrix

with the serial reductions and with parallel reductions executed on three different size
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cubes.

Bounding Function Testing The bounding functions are serial algorithms; therefore,

their effectiveness is judged with the serial SCP algorithm. It is much too time consuming

to expand a search tree by hand and then reduce the search tree using the dominance

test and lower bound tests; therefore, these two routines are checked via a confidence test.

The search is executed with and without the bounding tests and the number of nodes

expanded in the search tree is observed. Assuming that the bounding tests are effective,

one would expect to see less nodes expanded with either or both of the bounding tests

enabled. Furthermore, the serial algorithm should return the same optimal covering sets

as well as the same optimal cost. The same tests are executed with the parallel algorithms.

The efficiency of the tests is easy to observe given the Search Time performance metric

described in Section 5.2.

Display Routine Testing The effectiveness of the print routines and the save matrix

routine are easy to observe. The displays and saved files should correlate with the input

problems. The efficiency is not relevant since the displays are simply informational.

Sort Routine Testing The effectiveness of the sorting algorithms is checked by dis-

playing the matrix after it is sorted. A measure of their efficiency is obtained from the

sort time performance metric given by the SCP algorithms upon completion of the search.

Table D.2 shows the time to sort the rows and columns with the serial and parallel algo-

rithms.

Search Algorithm Testing The effectiveness of the three parallel search algorithms is

judged by comparing the returned optimal cost for the test matrices against the optimal

cost obtained from the serial SCP algorithm. The cost of the serial and parallel algorithms

must be equal, even though the covering sets may be different. Furthermore, the parallel

algorithms must return the same optimal cost for any number of searching processors. All

parallel algorithms do indeed return the same optimal cost per problem, Table D.1, for

1-31 searching processors.
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A major focus of this research is the efficiency of the parallel search algorithms;

I hence, the question of how to measure the search efficiency is of great concern. A common

measure of parallel program performance is the speedup defined by (56:93):

S(N) = to ialt(N)

Although speedup indicates the relative speed of the parallel versus serial algorithm, it

does not allow an interpretation of the efficiency of the parallel programs. For instance,

are all processors working all the time and are they contributing to the solution or just

* executing a redundant search? Additional performance metrics are required to answer

these questions.

The SCP programs provide more information than just the execution times required

to compute the speedup. They also show the time that the best cost was last updated,

the time spent searching, the time spent waiting for subgraphs to search, and the number

of nodes expanded. The time spent searching versus the overall execution time and the

time spent waiting for subgraphs to search are measures of the processor idle-time. The

total execution time refers to the time required to find the optimal solution. In other

words, it is the time to completely search the input matrix. Searching processors that do

not productively search the entire length of the total execution time are wasted. Hence,

considerable effort is exerted in this research to minimize the idle-time. In fact, the mini-

mization of processor idle-time is the prime motivation for developing the three versions of

the parallel algorithms. The maximum idle-time is tabulated in Table D.3 and is defined

as the amount of time between when the first searching processor stopped searching and

* when the search was complete.

The SCP program output is not included in this document; however, it is available

in the /results directory of the SCP files and an example is shown in Section C.5. The

results of the testing are tabulated in Appendix D with an explanation of the tables given

in the next section.

I
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5.4 Test Results

-- The purpose of this section is to explain how to read the tables with the interpretation

of the tables left for the next chapter. As shown in Table 3.1, AFIT's iPSC/2 computer

contains only eight nodes. To gather more data, customer service representatives at Intel

were contacted and an account on a 64-node iPSC/2 computer was obtained. Much of the

results presented in the tables were gathered on their computer. The following descriptions

indicate which data is obtained from AFIT's 8-node hypercube and which is obtained from

Intel's 64-node hypercube.

I Table D.1 - Shows the optimal solution and a corresponding list of covering sets to

the twenty-nine test problems. These solutions were obtained from the serial SCP

I algorithm executed on AFIT's hypercube.

Table D.2 - Execution times for the sorting and reduction algorithms. The serial times

are the algorithms executed by the serial SCP program and the parallel times are

from the dynamic load balanced parallel SCP algorithm executed on three different

cube dimensions since the parallel sort and reduction algorithms require 2 d processors

where d is the dimension of the cube. The serial sort algorithm is a quick sort and

the parallel sort is a bitonic merge sort. These times were collected at AFIT.

Table D.3 - The maximum time that a searching processor was idle during a search of

the test matrix This time is the maximum obtained for any number of processors.

The data is obtained from Intel's hypercube.

Table D.4 - A serial SCP program is available which executes on a node processor

rather than the host processor. This program is a strict serial program and it con-

tains no parallel algorithms. It is executed on a node processor because the node

processors are single user; hence, all CPU time is dedicated to the single user and

the program finishes sooner. This table shows the elapsed time from the beginning

of the search until the best cost was last updated (BCT), the search time (ST), the

total execution time (TT), and the number of search tree nodes expanded (EN). Only

* the solution times for the five most time consuming test matrices is shown since the

rest of the matrices are solved much too quickly for use in comparing the serial and

I 5-9
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parallel search algorithms. These times are the base times from which the speedup

is calculated were obtained from Intel's hypercube.

Tables D.5, D.6, and D.7 - These tables contain the same four measurements shown

in Table D.4 (i.e., BCT, ST, TT, and EN) for the same five test matrices searched

on Intel's hypercube. The searchers column refers to the number of processors

searching the input matrix and ranges from 1 to 31 searching processors.

Table D.8 - The speedup obtained when searching one of the five test matrices for 1-31

searching processors. The speedups are computed by dividing the times displayed in

Table D.4 by the search times (ST) displayed in Tables D.5, D.6, and D.7.

5.5 Summary

This chapter has discussed the performance metrics developed to test the efficiency

3 and effectiveness of the serial and parallel SCP programs. Not all pcssible metrics are

collected and analyzed. The effectiveness of the programs is judged mostly by comparison.

3 The serial SCP program is simpler than the parallel versions and is observed extensively in a

glassbox environment. Furthermore, the serial version of the SCP returns the correct result

3 for known test problems; hence, the solutions obtained from the serial SCP are assumed

correct and are used to validate the correctness of the solutions returned by the parallel

algorithms. The test matrix generation program is discussed along with the test plan

for the SCP options. A significant portion of this research is dedicated to improving the

3 efficiency of the parallel SCP programs; hence, a test plan to measure these improvements

is presented. The results of the testing are tabulated and presented in Appendix D. The

I last section of this chapter, Section 5.4, explains the tables and the data contained in them.

The interpretation of this tabulated data is the subject of the next chapter.

I
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VI. Conclusions and Recommendations

6.1 Introduction

Chapters I and II describe the nature of NP-complete problems and present existing

methods for designing parallel search algorithms. Furthermore, Chapter I introduces the

set covering problem (SCP) and supportive reasons for its selection as a representative of

3 the class of NP-complete problems. Chapter II describes the SCP in more detail; however,

a complete description of the problem is left to Appendix E. For reference purposes,

Appendix E also contains descriptions of four other NP-complete problems; namely, the

assignment problem, the hamiltonian circuit problem, the traveling salesman problem, and

the 0/1 knapsack problem.

The preliminary design as evolved in Chapter III focuses on the development of a3 parallel SCP algorithm with the detailed design presented in Chapter IV. The preliminary

design development introduces a data parallelism approach to parallelizing the SCP, as3 well as, the initial data and control structures. Formal definitions of serial and parallel

branch-and-bound SCP algorithms are presented in the context of UNITY metaprograms

3 for the high-level design.

The parallel branch-and-bound UNITY metaprogram is mapped to an architecture

3 specific UNITY metaprogram in Chapter IV. The remainder of Chapter IV presents

pseudo-code algorithms for the serial and parallel versions of the SCP. Three different3 parallel versions of the SCP are developed based on a desire to decrease individual processor

idle-time and are directed at improving the load balancing characteristics of the parallel

3 algorithms.

Chapter V describes the performance metrics employed to gather information about

the programs. It also describes the test plan for the algorithm evaluations and explains

the raw results tabulated in Appendix D.

An interpretation of the results is the purpose of this chapter, Chapter VI. Sec-

3 tion 6.2 is an interpretation of the results reported in Appendix D. This section justifies

and explains the results and relates the results to the complexity analysis conducted in

6
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Chapter IV. Section 6.3 contains concluding remarks concerning the relevance of this

research and compares the results with those published by other authors. Section 6.4 dis-

cusses major problems encountered during this research. It is included so as to help future

I users avoid some of the pitfalls experienced in parallelizing NP-complete problems on a

cube-connected computer. The last section, Section 6.5, lists recommendations for further

I research.

I 6.2 Interpretation of the Results

Before the actual search execution of the specific input problem is initiated, the data

is sorted and any user requested reductions are performed. As presented in Chapter IV, a

parallel bitonic merge sort and three parallel reductions are available. The results of the

testing are presented in Table D.2.

3 6.2.1 Sorting It is difficult to compare the efficiency of the bitonic merge sort with

the quick sort available in the serial SCP since the maximum size of the input matrix is

I constrained by the amount of memory available on the node processors (per Table 3.1).

Nevertheless, a 1000 x 700 matrix is generated and the rows and columns are sorted. The3 time required to perform a quick sort on both the rows and columns, as shown under the

'Serial' column in Table D.2, is 0.49 seconds. The time required required to perform a

I bitonic merge sort is shown under the 'Parallel' column for three different cube dimensions

and ranges from 0.22 to 0.35 seconds. Even for this small input problem, the bitonic merge

I sort out performs the quick sort.

The analysis of the bitonic merge sort in Section 4.6 gives the order-of as

Nd(d + 1)3 2d

moved items where N is the number of items to be sorted and d is the dimension of3 the cube. The quick sort is typically cited as O(nlogn) (10:462). Given the memory

constraints, the bitonic merge sort is validated by example. In other words, test input

3 matrices are sorted and the results are visually inspected. However, the data in the table
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indicates that the parallel sort is more efficient. Since the study of the bitonic merge is

not the objective of this research, no further work or analysis is performed.

6.2.2 Reductions Table D.2 also contains the time to execute all reductions for the

serial and parallel algorithms. Since the test matrices listed in Table D.1 are reducible in

such a short time, the 1000 x 700 matrix generated for the sort routines is used and the

SCP algorithms are modified to execute only the reduction algorithms (i.e., no search).

The results indicate that the parallel algorithms are about 1.5 times faster than the serial

reduction algorithms. As with a comparison of the sorting algorithms, the size of the

input data is limited by the node processor's main memory. Since large input problems

can not be tested without major modifications to the SCP software, no further testing is

accomplished. The only empirical conclusions possible for such small problems is that the

parallel reductions are faster than the serial reductions.

1 6.2.3 Searching In contrast to the sorting and reduction algorithms, extensive test-

ing was conducted on the parallel search algorithms. Data is gathered from each one of the

controller and searching processors. The raw data is not included in this document due to3 the volume, but is available in the /results directory containing the SCP programs.

Much of the justification for implementing three different parallel versions of the

3 SCP is based on reducing individual processor idle-time. Table D.3 shows the maximum

idle-time obtained when the three parallel SCP algorithms searched the five test matrices.

3 The results indicate that, in general, the coarse grain algorithm incurred the most idle-

time (85-1065 seconds) followed by the fine grain algorithm (152-144 seconds) and then

3 the dynamic load balanced (DLB) algorithm (19-42 seconds); however, these numbers are

deceiving. If one were to judge the parallel algorithms based solely on processor idle-time,

3 the DLB algorithm is clearly the most efficient algorithm and the fine grain algorithm is

usually better than the coarse grain algorithm. Such a conclusion is invalid as shown in

3 the following discussion.

Tables D.4, D.5, D.6, and D.7 document the best cover time (BCT), the search time

(ST), the total time (TT), and the number of expanded nodes (EN) for the serial and
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three parallel SCP algorithms. A normalized speedup is calculated by dividing the search

3 time contained in Table D.4 by the parallel search times. These normalized speedups are

contained in Table D.8 and plotted in Figures 6.1, 6.2, 6.3, 6.4, and 6.5.I
Normalized Speedup (100.100.28.U)

* 24:

1)6
12:

3 8
4:

0:
0 4 2 16 20 24 28Number of Searchers

3-in- coarse Grain -4- Rhe Grain -W- Dinsunic (DIB) -0- 9Zning

3 Figure 6.1. Normalized Speedup for Test Matrix 100.100.28.U

As previously noted, processor idle-time alone is not an accurate indicator of the

performance of parallel algorithms. For example, an examination of Figures 6.1 to 6.5

clearly contradicts the previous conclusion that the DLB algorithm is better than the fine

grain algorithm which is better than the coarse grain algorithm. Figure 6.1 shows that

the fine grain algorithm is better than both the DLB and the coarse grain algorithms. On

the other hand, Figure 6.4 shows that the coarse grain algorithm performs better than the

other two algorithms for this particular test case.

The difference is easily explained. Recall from Chapter IV that the coarse grain3 and the fine grain versions of the SCP use different breadth-first expansion algorithms.

Given that NP-complete problems are inhomogeneous, the different expansion algorithms

3 produce radically different search graphs; hence, the difference in performance between the

coarse grain and fine grain algorithms is unpredictable. In fact, one could argue that the
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two algorithms are searching entirely different problems since the search graphs produced

for the same problem may be completely different.

The expansion algorithm affects both the solution time and the idle-time; however,

the processor idle-time is affected more by the allocation of the initial subgraphs than

by the expansion algorithm. Since subgraphs in the coarse grain algorithm are statically

allocated, processor idle-times are typically longer with the coarse grain algorithm than

with the dynamically allocated fine grain algorithm. Even so, an examination of the raw

data reveals that the coarse grain expansion algorithm usually results in a quicker best

cover time (i.e., it finds the optimal cover before the fine grain expansion algorithm).

The DLB algorithm was developed to fu- ther decrease the maximum processor idle-

time and to improve the efficiency of the search algorithm. Notice in Figure 6.1 that the fine

grain algorithm is consistently faster than the DLB algorithm. Either the DLB is inefficient

3 or the fine grain algorithm is highly efficient for this problem instance. In this particular

problem, the fine grain expansion algorithm balances the load from the beginning of the3 search. Any additional load balancing (e.g., dynamic load balancing) simply steals CPU

cycles from the search algorithm and delays the completion of the search.

3 The DLB algorithm is not necessarily inefficient; however, it does include additional

code to dynamically share portions of a processor's search graph. Even though the timing

3 data obtained from the node processors indicates an extremely small percentage of time

devoted to the dynamic load balancing process, the data does not indicate the total proces-3 sor time devoted to the token process. This time is significant in some problem instances as

shown in Figures 6.1,6.2, 6.3, and 6.4. In each of these graphs. the speedup of the fine grain3 algorithm closely parallels the speedup of the DLB algorithm. Furthermore, notice that

the fine grain algorithm is frequently more efficient than the DLB algorithm even though

3 the performance data from the searching processors indicates the DLB algorithm did in

fact share subgraphs between searching processors. Two reasons for the DLB's apparent

Sinefficiency are: 1) the token process is stealing too much time from the search process, 2)

the searching processors are spending too much time partitioning and sending subgraphs

3 to other processors. Unfortunately, the mclock() function does not provide a method to

compute the CPU time consumed by the separate token process; hence, another method
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must be found to measure process time. The second reason suggests that the processors

are partitioning the subgraph at too low a level in the search tree and a heuristic algorithm

is required to prevent such low-level partitioning.

I Despite the previous figures, Figure 6.5 shows that the DLB algorithm does work.

For this specific problem, the fine grain expansion algorithm only creates 19 subgraphs due

to limitations in the expansion algorithm. In effect, this is a coarse grain partitioning of the

initial search graph. Since only 19 subgraphs are developed, the processors quickly become

idle and the efficiency of the search suffers. With the DLB algorithm, the idle processors

immediately receive a subgraph from the working processors and contribute to the search.

Had the dynamic load balancing algorithm not been effective, the DLB's speedup curve

would have paralleled the fine grain algorithm's curve as in previous graphs.

6.3 General Conclusions

Given the preceding phenomena; namely,

e ethe maximum idle-time is not a true indicator of an algorithms' performance;

e in specific instances, the coarse grain algorithm is more efficient than the fine grain

or DLB algorithms; and

. the DLB algorithm is not necessarily more efficient than the fine grain algorithm;

are the research results inconclusive? Certainly not!

One of the objectives of this research was to investigate methods to parallelize NP-

complete problems. Three methods are presented and a speedup is obtained for each. In

fact, a super-linear speedup is obtained for four of the five test matrices. The possibility

of super-linear speedup in branch-and-bound search problems was predicted by Lai and

Sahni (40) but it is unclear whether anyone had confirmed this phenomenon via the test

results from an actual implementation. This is not to say that the algorithms presented here

routinely produce a super-linear speedup. On the contrary, one could develop many test

cases which would quickly disprove such a statement. However, the algorithms presented

* here show a tendency to go super-linear for input test cases that require a substantial

amount of time to solve with a serial algorithm. More research is required to ascertain
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whether specific problem characteristics can be a priori exploited to obtain predictable

I super-linear speedup.

The performance increases presented here are the result of a different approach than

that documented in much of the published literature (44, 51, 1, 46, 23). The typical ap-

proach to parallelizing an NP-complete problem seems to center around the existence of a

centrally maintained priority queue containing unsolved subbranches. The processors re-

ceive a subgraph, further partition the subgraph, and then transmit the newly partitioned

subgraphs back to the centrally maintained queue. Such an approach is communications

intensive as shown by Quinn (51). The approach presented here is to partition the search

space first and distribute the subgraphs to the individual processors. As such, the commu-

nications overhead becomes insignificant and the problem becomes compute bound. This

simple but elegant approach to the initial load balancing is only possible because of the

preordering (i.e., the construction of the SCP table) accomplished before the search. The

result is a simple and highly efficient initial distribution of the load for many problem

instances. The possibility of a similar preordering in other NP-complete problems is left

for future researchers.

To date, much of the research into parallel branch-and-bound algorithms has focused

on the traveling salesman problem. The research presented here contains the first known

parallel implementation of the SCP. Given the general application of the SCP to many

different problems and the results published in this document, applications based on a3 parallel SCP (e.g., weapon to target assignment, optimal resource scheduling, VLSI ex-

pression simplification, and information retrieval) could achieve considerable performance

increases. Furthermore, the methods presented here show that it is possible to realize a

performance increase using control and data structures centered around something other

than a centrally maintained priority queue.

The results further indicate that the performance of a parallel NP-complete search

* is highly dependent on the method chosen to distribute or balance the load between the

processors. The initial distribution of subgraphs accomplished by the parallel SCP algo-

3 rithms, in many of the test cases, is sufficient to ensure a 'good' load balancing. However,

as Figure 6.5 indicates, a dynamic load balancing algorithm is necessary in those instances
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where the initial distribution fails to obtain the desired load balance. The dynamic load

Ibalancing algorithm developed for this research is a much simpler algorithm than those

presented by Felten (23) or Ma (44). The algorithm employs a separate process to pass

Ia token between the processors and to coordinate all load balancing. The separate token

process is designed such that termination is easily detected and, in the absence of any

Iother load balancing scheme, the DLB algorithm may provide acceptable performance.

I6.4 Problems Encountered During Research

The previous section interprets the final results, but does not discuss the problems

encountered in designing and implementing the programs. The purpose of this section is

*to present significant problems encountered and interesting observations.

The majority of the data shown in the tables of Appendix D is based on time. The

iPSC/2's mclock() function provides the time for either the host or node processors. Care

must be taken when using this function since it operates differently on the host than on

the nodes. For instance, it is easy to obtain a false parallel execution time using the host's

mclocko function since the user's host process is periodically swapped during the parallel

run and its clock suspended (35). Hence, the host's execution time from the mclock()

function may return a time which is significantly less than the actual time spent solving

the problem. On the other hand, the node processor mclock() function does not return

the process time. It is based on the time since the last reset of the nodes and is more of

a 'wall-clock' time. Since each process reads the same clock, the process times can not be

added to obtain the total processor time spent on a problem.

The iPSC/2 limits the size of the host-to-node messages to 256 Kbytes but does not

limit the message size between the node processors1 (37). Since the host-to-node message

size is limited, two routines were developed to send and receive large blocks of data. The

respective routines are called SendVector() and ReceiveVector() and are contained in

file msgio, c located in the directory with the parallel SCP programs. These two routines

'The message size between nodes is limited only by the amount of node processor memory.
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operate similar to csend() and crecv() except that they send/receive a maximum message

I size of 256 Kbytes.

The procedure for compiling node programs with floating-point arithmetic is some-

what buried in the iPSC/2 manuals. Any reference to a floating-point number requires the

object files to be compiled and linked with the -sx switch if that program is to be executed

on a node containing a scalar processor. The switch is not required if the program executes

on the host processor. Little information is provided here concerning the compiling and

linking of C programs for the iPSC/2; however, complete information is contained in the

iPSC/2 manuals listed in the bibliography (33, 34, 35, 36, 37, 8).

6.5 Recommendations for Further Research

As with any research project, the investigation never ends! The following list of

* recommendations is provided to further extend this research topic:

1. Develop a parallel algorithm to build the SCP table. The construction of the table

is currently accomplished on the controller by a serial algorithm. The amount of

time to build the table is less than 0.5 seconds for any of the test problems listed in

Table D.1; hence, only insignificant improvement in the overall SCP solution time can

be realized by the creation of a parallel SCP table construction algorithm. Even so,

the design and implementation of such an algorithm may be of academic importance

as it is a parallel matrix manipulation problem.

2. Add an option to save state information. The state information is easily obtained

* from the programs and may be of interest for graphic animation of the search tree.

3. Build the SCP table such that the columns are sorted on their cost as well as their

cardinality. The current algorithms only sort on cost; hence, the columns for unit

cost matrices are not sorted. It may be beneficial to sort the columns according to

decreasing order on the column cardinality. Such an ordering would put the columns

covering more rows at the beginning of the blocks in the table.

4. Investigate other methods of partitioning the initial input search graph. Perhaps

use the coarse grain breadth-first expansion method for the fine grain and dynamic
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load balanced algorithms. Since the best cover times in Table D.5 are typically less3 than the corresponding best cover times in either Tables D.6 or D.7, it is reason-

able to assume that the coarse grain expansion algorithm is more likely to lead to

a quicker solution. Suggest the coarse grain expansion algorithm be implemented

with dynamic allocation (i.e., partition the subgraphs according to the coarse grain

expansion algorithm and dynamically assign the subgraphs to the searching proces-

sors).

I 5. Determine why the dynamic load balancing algorithm occasionally performs worse

than the fine grain algorithm. As previously stated, it may be that the token process

is consuming too much CPU time or that the dynamic load balancing algorithm is

* dividing the search tree at too low a level.

6. Investigate the use of the dynamic load balancing algorithm as the sole method of

distributing the load between the processors. Figure 6.5 seems to indicate that the

dynamic load balancing algorithm may be sufficient to obtain an acceptable speedup

3 in many problem instances.

7. Apply the parallel SCP algorithms or concepts to 'real-world' problems. Given the3 demonstrated performance of the SCP algorithms, it would seem reasonable to expect

performance increases in many problems for which the SCP is particularly suited.

3 Examples of such problems are presented in Appendix E.

8. Investigate the existence of specific problem characteristics which may lead to super-

3 linear speedup.

I 6.6 Summary

As stated on pages 2-23 and 2-25 of Chapter II, NP-complete problems are inho-

mogeneous; therefore, it is extremely difficult to make any a priori predictions concerning

the nature of the search. In other words, the search may finish quickly or may require

exponential time. A parallel implementation of an NP-complete problem can not change

3 this fact.
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This document has presented the design and implementation for a serial and three

1 parallel SCP algorithms. The basic design philosophy has been to develop the serial algo-

rithm first followed by a parallel decomposition. The SCP is an optimal search problem;

hence, it is most naturally parallelized with a data parallelism approach. UNITY designs

are developed and mapped to the iPSC/2 architecture per the design process outlined in

I Chandy and Misra (16).

A coarse grain algorithm with static allocation of the initial subgraphs is designed

and implemented. Preliminary testing indicates that the algorithm is effective but that

many of the searching processors are idle for extended periods of time. Therefore, in an

attempt to decrease the processor idle-time, a fine grain algorithm with dynamic alloca-

tion is developed. The fine grain algorithm typically exhibits less processor idle-time but

test results still indicate that valuable CPU time is being wasted due to idle searching

* processors.

Finally, a dynamic load balanced algorithm is designed and implemented. An inspec-

* tion of individual processor idle-time indicates that this algorithm is more efficient than

both the coarse grain and fine grain algorithms. However, as above analysis has shown,

* such a conclusion is invalid since given a 'good' initial division of the search graph by

the expansion algorithm, the use of a dynamic load balancing algorithm is detrimental

U to the search. Even so, the dynamic load balancing algorithm was shown to improve the

performance of a poorly balanced search.

I
I
I
I
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Appendix A. Serial SCP Program Structure Charts and ADTs

Chapter III stated that many of the routines for a parallel implementation of the

SCP were actually serial; therefore, a serial version of the SCP was implemented as a base

for the parallel implementation. The design is given in terms of UNITY programs and3 pseudo-code algorithms. This appendix contains additional documentation on the serial

routines.

I The first section contains structure charts for the general design and the second

section contains abstract data types (ADTs) for the individual routines. The structure

I charts show the calling and called routines. A table of contents is included with a brief

explanation of each chart. The ADTs show the data passing between the routines and,

I since these ADTs are not standard, the notation is explained at the beginning of the

section. Also, a table of contents and brief explanation are given for each ADT.

A.1 Serial Set Covering Problem Structure Charts

An explanation of the notation is required. Routine names of the form Serial3cp

(i.e., routine names with no parenthesis) are not actual program names, but references to

other figures. Routine names of the form PrintHelp() are actual routine names.

3 Serial SCP Structure Charts:

Figure A.1 Serial Scp is the main controlling program and interface with the

user. It calls routines to read the 0-1 matrix, implement the a priori reductions,

build the initial data structures and table, search the matrix, and write the

reordered/reduced matrix to a user specified file.

Figure A.2 Reductions references all the serial reductions.

Figure A.3 QuickSort () is a modified version of a quick sort routine obtained from3 Computer Innovations C86 compiler (20).

Figure A.4 Debug Routines refers to routines which print the table data structure3 in various forms. This output is not normally available to the user. They are

included for future work.

I
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Figure A.5 SerialScpSearcho) is the actual search routine. It searches the input

I matrix using the table constructed by BuildTable() referenced in Figure A.1.

LoverBound() is a lower bound test and ExistDomSet() is a dominance test.

Figure A.6 Stack Operations refers to a semi-generic set of stack operations.

FprintHelpo] WriteFileol

ReductionsPrndj t)

jSkipLine() QuickSortDeu otns

BuildTableo) AcnI gos(

I AscendingCard()

I Figure A.1. Serial SCP Structure Chart
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1Reductionl() IIReduction2O)I Reduction3()I euto4L

[RemoveVertcs RemoveSets() FInd Vertices() Fido ts()

Figure A.2. Serial SCP Reductions Structure Chart

I Figure A.3. Serial Sorts Structure Chart

Debug
* Routines

1PrintTablePointers()~ble
N Figure A.4. Serial SCP Debug Routines Structure Chart
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Ieilcperh

IOperations [PurgeLol IsSubset()

Figure A.5. Serial SGP Search Structure Chart

FlushStacko PopOffStack()

ItmInStack E

I Figure A.6. Stack Structure Chart
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A.2 Serial Set Covering Problem ADTs

These ADTs are included to help future engineers modify or use this software. The

ADT name (e.g., CMPF) is the name of the file containing the routines. The routines con-

tained within a particular ADT show the flow of data into or out of the routine. Standard

3 data types such as int, boolean, and char are used. In an attempL to make the data types

more explicit, data types more descriptive than say, record or array, are used and the

3 name of the variable is given. This structure is similar to the prototypes used in ANSI C.

TABLE-NODE is an individual record of the table shown in Figure 3.3 on page 3-11. For

I example:

0 0 Down Right

in Blcck 0 is a TABLE-NODE. VERTEX and SET refer to the vertex and set records shown

3 in Figures 3.4 and 3.5 on page 3-12. An S-NODE is an entry on the stack. Figure 4.5 on

page 4-9 shows the stack which is constructed as a singly-linked list where the items on

* the stack are pointers to a data structure.

Serial SCP ADTs:

ADT A.1 CMPF - Contains the comparison functions for the generic sorts. The

3 sorts call these routines to compare the items passed to it for sorting. In this

manner, the sort routines can sort any type of data.

3 ADT A.2 DOMTEST - The dominance test routines. See Section E.6.6 for an ex-

planation of the dominance test.

I ADT A.3 FILE - This ADT contains the file handling routines.

ADT A.4 FSUBSET - The reductions (ADT A.8) use these routines to find and

mark rows or columns which are dominated by other rows and columns.

3 ADT A.5 LBOUND - The lower bound test routines. See Section E.6.7 for an ex-

planation of the lower bound test.

3 ADT A.6 PRINTADJM - Prints the 0-1 matrix to a file.

ADT A.7 PRTHELP - Prints a help screen to the monitor.
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ADT A.8 REDUCE - Reduce the 0-1 input matrix.

I ADT A.9 REMOVEVS - Remove the rows or columns for the reduction routines.

3 ADT A.10 SCP - The main routine. It coordinates all action.

ADT A.11 SRLSDRTS - Three generic, serial sort routines.

I ADT A.12 STACK - A semi-generic implementation of a stack.

3 ADT A.13 TABLE - Build the table to assist in the search.

UADTA.
structure GMPF3 declare

DescendingCard( VERTEX *Vertexl, VERTEX *Vertex2) -+ Int
AscendingCost(SET *Setl, SET *Set2) --+ Int3end CP

ADT A.23 structure DOMTEST
declare

ExistDomSet(LZL.NODE **L, ht Zprime, TABLE-NODE *NextSet,I mt GostOfNextSet, mnt Nverts, mnt Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set) --+ BOOLEAN, L

AddNewElement(LZL-NODE *Lptr, int *NewEprime, mnt NewCard) -+Lptr

IsSubset(int *E, EL-NODE *Element, int GardE) --* BOOLEAN

InitLZL-NODE(LZI-NODE *Node, mnt Z, EL-NODE *El, mnt NumEl
LZL-NODE *Nxt) --+ Node

PurgeL(LZL-NODE *L) --* L
PrintL(LZL.NODE *L)

end DOMTEST

ADT A.3
structure FILEI declare

BOOLEAN ReadFile(char *FileName, mnt Nverts, mnt Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set) --+ BOOLEAN, Nverts,I Nsets, AdjMat, Vertex, Set

SkipLine(FILE *Stream) --+ Stream
BOOLEAN WriteFile(char *FileName, int Nverts, int Nsets, mnt *AdjMat,I VERTEX *Vertex, SET *Set) --+ BOOLEAN

end FILE
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ADT A.4
structure FSUBSET

declare
FindDomVertices(int NumVertices, jut Nsets, int *AdjMat, VERTEX *Vertex)

--+ Vertex
FindDomSets(int NumSets, jut Nverts, int Nsets, int *AdjMat,

VERTEX *Vertex, SET *Set) --+ Set
end FSUBSET

ADT A.5
structure LBOUND

declare
LowerBound(TABLE-.NODE *Table, TABLE-.NODE *TheNextSet, int Z,

int Zhat, jut Nverts, VERTEX *Vertex) -- BOOLEAN
Make&Ds(TABLE-NODE *TheNextBlock, iut *Rj, iut NumUncoveredRows,

int *AdjMat, VERTEX *Vertex, SET *Set) -

D, Dprime, NRows, NCols
Computell(int *D, jut *Dprjme, jut NumRows, jut Num~ols, int Z, jut Zhat) -U mnt
RemoveRow(int *111, jut *NumUncoveredRows, jut Row)

Ri, NumUncoveredRowsU end LBOUND

ADT A.6
structure PRINTADJM

declare
void PrintAdjMat( jut Nverts, jut Nsets, jut *AdjMat, VERTEX *Vertex,I SET *Set)

end PRINTADJM

IADTA.
structure PRTHELP

declare
Printllelp()

end PRTHELP
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ADT A.8
* structure REDUCE

declare
Reductionl(int Nverts, VERTEX *Vertex) -+ BOOLEAN
Reduction2(int **RemovedSets, *Cost OfRemovedSets, int Nverts, int Nsets,

int *AdjMat, VERTEX *Vertex, SET *Set) --+ RemovedSets,
CostOfRemovedSets, Nverts, Nsets, AdjMat, Vertex, Set

Reduction3(int Nverts, int *AdjMat, VERTEX *Vertex)
Nverts, AdjMat, Vertex

Reduction4(int Nsets, int *AdjMat, VERTEX *Vertex, SET *Set) -

end RDUCENsets, AdjMat, Vertex, Set

ADT A.9
structure REMOVE VS

declare3 RemoveVertices(int Nverts, int Nsets, int *AdjMat, VERTEX *Vertex) -

Int, Nverts, AdjMat, Vertex
RemoveSets(int Nverts, int Nsets, int *AdjMat, VERTEX *Vertex, SET *Set)

end REMOVEVS Int, Nsets, AdjMat, Vertex, Set

U ADT A.10
structure SCP

declareI main(int argc, char *argv[], int Nverts, int Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set) -. Nverts, Nsets, AdjMat, Vertex, Set

SerialScpSearch(TABLE..YODE, *Table, int * Cost OfCoveringSets,
int **CoveringSets, int Nverts, int Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set)--

Cost OfCoveringSets, CoveringSets, Vertex, Set
MarkAndAdd(TABLE-.NODE *TheNextSet, int *NumVertjcesCovered,

int "*Cover, int CoverCost, iut NextElement, int Nverts,
int Nsets, int *AdjMat, VERTEX *Vertex, SET *Set)--I Int, NumnVerticesCovered, Cover, NextElement, Vertex, Set

end SCP
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ADT A.11
structure SRLSORTS

declare
MergeSort(char *Baseji, char *Base-j, int NumElements-1, int NumElements-J.

jut ElementWidth, int (*cmpf)()) --+ Base]i, Base.j
QuickSort(char *Base, int NumElements, int ElementWidth,

jut (*cmpf)O)) --+ Base
InsertionSort (char *Base, int NumElements, int ElementWidth,

jut (*cmpf)O)) -+ Base
SwapByte(char *aptr, char *bprt, jut count)

end SRLSORTS

ADT A.12
structure STACK

declare
OpenStack(S-.NODE **TopPtr) -+TopPtrI FlushStack(S.-NODE **TopPtr) -*TopPtr

PushOnStack(S-.NODE **TopPtr, ITEM *NewltemPtr) -~TopPtr

PopOffStack(S -NODE **TopPtr) -~ITEM, TopPtr

end TACKItemslnStack(S..NODE *TopPtr) In t

U ADT A.13
structure TABLE

declareI BuildTable(TABLE-.NODE **Table, jut Nverts, int Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set) --+ BOOLEAN, Table

PrintTable(TABLE-.N ODE *Table, int Nverts, jut Nsets, jut *AdjMat,I VERTEX *Vertex, SET *Set)
PrintTablePointers(TABLE..NODE *Table)

end TABLE
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Appendix B. Parallel SCP Program Structure Charts and ADTs

This appendix, similar to Appendix A, contains the structure charts and ADTs

for the parallel software. Since a large part of the parallel routines are simply serial

routines, several of the structure charts in this appendix may refer to structure charts in

the Appendix A.

3 The first section contains the structure charts with the ADTs in the second section.

Both sections contain a table of contents and brief description similar to Appendix A;3 therefore, an explanation of the notation is not repeated here except when different from

the previous appendix.

B.1 Parallel Set Covering Problem Structure Charts

* Parallel SCP Structure Charts:

Figure B.1 Communications Chart shows the communications that occur over the

cube network. These programs are all main programs running on either different

processors or as different processes. They only communicate via cube send and

recv commands.

3 Figure B.2 scp is the main program similar to the serial version of the SCP. In

the parallel case, scp executes on the host processor and is the interface with3 the user and the file system. It reads the ?ut data and sends it to the cube

control process: scpcntxx. Data arriving from the control process is displayed3 to the console or written to a file.

Figure B.3 scpcntcg is the control program for the coarse grain version of the3 parallel programs. It sends the input data to the searching processors and then

waits for the optimal answer to return. When all searchers are finished, it sends

the optimal solution and performance statistics to scp.

Figure B.4 scpndcg is the coarse grain controlling routine for the coarse grain

I version of the searcher program. It builds a table and a list of subgraphs from

I
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the input matrix. Each searcher then executes its search on its predetermined

subgraphs. Upon completion, it sends performance statistics to scpcntcg.

Figure B.5 sscpnode is the controlling routine for the serial search program exe-

cuting on a cube processor. This program is basically the same as Figure A.1

in Appendix A without the user interface and file I/O routines. It is included

so that a better comparison between the serial and parallel program times can

be obtained.

Figure B.6 Parallel Sorts is a generic version of a parallel bitonic merge sort.

The parallel sort is controlled by the controller and each searcher participates

as directed.

Figure B.7 Reductions are parallel versions of the a priori reductions.

Figure B.8 ScpSearcho) is the parallel search called by 3cpndcg. It is a modi-

fied version of SScpSearch which includes logic for the global best cost and

communications with the controller.

Figure B.9 queue Operations contains a semi-generic set of queue operations.

Figure B.10 SScpSearcho) is the actual serial search called by sscpnode. It exe-

cutes the same search as SerialScpSearch() in Figure A.5 of Appendix A.

Figure B.11 scpcntfg is the controller for the fine grain parallel search. It builds

subgraphs and ships them out to the searchers upon request. When all sub-

graphs are allocated, it basically waits for all searchers to finish and then sends

the performance statistics and optimal solution to scp.

Figure B.12 scpndfg is the fine grain controlling routine for the ScpSearch() of

Figure B.8. It requests subgraphs from the controller and then passes the sub-

graph to ScpSearcho. When it no longer receives subgraphs, scpndfg sends

its performance statistics to scpcntfg.

Figure B.13 scpndlb is the dynamic load balanced parallel version of the SCP. It

is slightly different than scpndfg in that it calls a different search routine.

Figure B.14 ScpSearch() is the dynamic load balanced searcher program. It is

different than the ScpSearch() in Figure B.8 because it must call a load bal-
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ancing routine to transfer subgraphs to other searching processors. Other than

I the load balance routine, it is the same.

I
F scp

* Figure B.2

IA s 1 • ' *

%I

scpcntcg , %
Figure B.3 % %

scpndcg %

Figurigur BA.12po

Figure B.5 Fu

I
I%

I scpcntfg
scpcntlb F Figure B. 11IFigure B.11 A,

~scpndfg
Iscpndlb Figure B.12

F Figure B.13 I

IFigure B.1. Parallel SCP Communications Structure Chart
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Figure B.8R Figure A.4

Figure B.6 Figure B.7
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l Figure B.9

i Figure B.4. Parallel Coarse Grain SCP Searcher Node Structure Chart
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Figure B.5. Node Processor Serial SCP Structure Chart
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Figure B.6. Parallel Sorts Structure Chart
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B.2 Parallel Set Covering Problem ADTs

The ADTs are similar to those in Appendix A; however, a new data type has been

added. The QNODE data type is a node in the queue. It has basically the same structure

as SJIODE given in Appendix A. The major difference is that for the queue a pointer to

the front and rear is required so that an item can be appended to the rear of the queue

and removed from the front of the queue. Figure 4.7 on page 4-13 illustrates the queue

* data structure.

Parallel SCP ADTs:

ADT B.1 CMPF - Contains the comparison functions for the generic sorts. The

sorts call these routines to compare the items passed to it for sorting. In this

manner, the sort routines can sort any type of data.

3 ADT B.2 DOTEST - The dominance test routines. See Section E.6.6 for an expla-

nation of the dominance test.

U ADT B.3 FILE -This ADT contains the file handling routines.

ADT B.4 FSUBSET - The serial reductions (ADT B.15) use these routines to find

and mark rows or columns which are dominated by other rows and columns.

3 ADT B.5 FSUBSETS - The parallel reductions (ADT B.11) uses these routines to

find and mark rows or columns which are dominated by other rows and columns.

It contains modified versions of the routines in ADT B.15.

ADT B.6 LBOUND - The lower bound test routines. See Section E.6.7 for an ex-

* planation of the lower bound test.

ADT B.7 LBPROC - The dynamic load balancing routine. It is a separate process:

hence, the ADT.

3 ADT B.8 KARKNADD - Mark the rows as covered, the sets as used, and add the set

to the list of covering sets.

3 ADT B.9 MSGIO - Send and receive large, contiguous blocks of data. Needed

between the node processors and the host processor.

I B-12
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ADT B.10 PARSORTS - Parallel sort routines.

ADT B.11 PREDUCE - Parallel a priori reductions.

3 ADT B.12 PRINTADJM - Prints the 0-1 matrix to a file.

ADT B.13 PRTHELP - Prints a help screen to the monitor.

I ADT B.14 QUEUE - A semi-generic implementation of a queue.

ADT B.15 REDUCE - Reduce the 0-1 input matrix.

ADT B.16 REMOVEVS - Remove the rows or columns for the serial and parallel

3 reduction routines.

ADT B.17 SCP - The main routine. It coordinates all action.

I ADT B.18 SCPCNTCG- Coarse grain parallel controller routine.

ADT B.19 SCPCNTLB - Dynamic load balanced parallel controller routine.

ADT B.20 SCPCNTFG - Fine grain parallel controller routine.

3 ADT B.21 SCPNDCG - The coarse grain parallel node routine (i.e., a searcher).

ADT B.22 SCPNDLB - The dynamic load balanced parallel node routines.

ADT B.23 SCPNDFG - The fine grain parallel node routines.

3 ADT B.24 SRLSORTS - Three generic, serial sort routines.

ADT B.25 SSCPNODE - Serial SCP search executed on a node processor.

I ADT B.26 STACK - A semi-generic implementation of a stack.

ADT B.27 STARTSET - Builds the subgraphs.

ADT B.28 TABLE - Build the table to assist in the search.

B
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ADT B.1
structure GMPF

declare
AscendingCard( VERTEX *Vertexl, VERTEX *Vertex2) --+ It
Pad VertexCard(char *Base, int NumVertices) -+ Base
UnpadVertexCard(char *Base, int NumVertices) --+ Int, Base
AscendingCost(SET *Setl, SET *Set2) - It3 PadSetCost(char *Base, int NumSets) --* Base
UnpadSet Cost (char *Base, int NumSets) --+ Int, Base

end CMPF

ADT B.23 structure DOMTEST
declare

ExistDomSet(LZL-NODE **L, int Zprime, TABLE-NODE *NextSet,I mt CostOfNextSet, jut Nverts, jut Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set) --+ BOOLEAN, L

AddNewElement(LZ-N ODE *Lptr, iut *NewEprime, int NewCard) -~Lptr

IsSubset(int *E, EL-NODE *Element, int GardE) --* BOOLEAN
InitLZL-NODE(LZI-NODE *Node, jut Z, EL-NODE *El, iut NumEl

LZI-NODE *Nxt) --* NodeU PurgeL(LZL-NODE *L) --* L
PrintL(LZL-NODE *L)

end DOMTEST

ADT B.3
structure FILEI declare

BOOLEAN ReadFile(char *FileName, jut Nverts, jut Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set) --* BOOLEAN, Nverts,I Nsets, AdjMat, Vertex, Set

SkipLine(FILE *Stream) --+ Stream
BOOLEAN WriteFile(char *FjleName, jut Nverts, jut Nsets, jut *AdjMat,

end ILEVERTEX *Vertex, SET *Set) --+ BOOLEAN

IADTB.
structure FSUBSET

declare

FindDomVertices(int NumVertices, jut Nsets, int *AdjMat,
VERTEX *Vertex) - Vertex

FindDomSets(int NumSets, int Nverts, jut Nsets, jut *AdjMat,

VERT EX *Vertex, SET *Set) -- Set
cud FSUBSET
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ADT B.5
structure FSUBSETS

declare
FindDomVertices(int NumVertices, jut Nsets, jut *AdjMat,3 VERTEX *Vertex) --+ Vertex
FindDomSets(int NumSets, jut Nverts, int Nsets, int *AdjMat,

VERTEX *Vertex, SET *Set) --+ SetI PFindDomVertices(int NumnVertices, int NumTopVerts, iut Nsets,
int *AdjMat, VERTEX *Vertex) --+ Vertex

PFindDomSets(int NumSets, int NumTopSets, int Nverts, jut Nsets,

end FSUSETSjut *AdjMat, VERTEX *Vertex, SET *Set) --* Set

3 ADT B.6
structure LBOUND

declare
LowerBound(TABLE-NODE *Table, TABLE-NODE *TheNextSet, jut Z,

int Zhat, jut Nverts, VERTEX *Vertex) --* BOOLEAN
Make.Ds(TABLE-NODE *TheNextBlock, jut "'Ri, jut NumUucoveredRows,

jut **D, jut **Dprjme, jut *NRows, jut *NCols, jut Nverts, jut Nsel~
jut *AdjMat, VERTEX *Vertex, SET *Set) -

D, Dprime, NRows, N~olsI ComputeH(iut *D, jut *Dprime, jut NumRows, int NumCols, jut Z,
jut Zhat) --+ Iut

RemoveRow(int *Ri, jut *NumUncoveredRows, jut Row) -I RI, NumUucoveredRows
eud LBOUND

I ADT B.7
structure LBPROC

declare

end LBPROCn(

I ADT B.8
structure MARKNADD

declare

MarkAudAdd(TABLE-NODE *TheNextSet, int *NumVertjcesCovered,
jut "*Cover, jnt CoverCost, jut *NextElement, jut Nverts,
jut Nsets, jut *AdjMat, VERTEX *Vertex, SET *Set) -f

Iut, NumnVerticesCovered, Cover, NextElement, Vertex, Set
end MARKNADD
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ADT B.9
structure MSGIO

declare
SendVector(int SendType, char *Vector, int NumElements, jut ElementSize,3 jut NodeID, int ProcesslD)
ReceiveVector(int ReceiveType, char *Vector, int NumElements,

jut ElementSize) --+ Int, Vector
end MSGIO

ADT B.10
structure PARSORTS

declare
ParSort(int Order, char *Base, jut NumElements, jut ElementWidth,

jut (*cmpf)O), jut (*apadf)(), jut (*rpadf)(), jut CubeDim) -

BitonicMerge( jut Order, char *aArray, jut NumElemeuts, jut ElementWidth,3n CubeDim, jut (*cmpf)O)) -~ aArray
end PARSORTS

3 ADT B.11
structure PREDUCE

declareI Reductionl(iut Nverts, VERTEX *Vertex) --+ BOOLEAN
ParReductiou2(int **RemovedSets, jut *Cost OfRemovedSets, jut Nverts,

jut Nsets, jut *AdjMat, VERTEX *Vertex, SET *Set)I Tnt, RemovedSets, Cost OfRemovedSets,
Nverts, Nsets, AdjMat, Vertex, Set

ParReductiou3(int CubeDim, jut Nverts, jut Nsets, jut *AdjMat,I VERTEX *Vertex) --+ Nverts, AdjMat, Vertex
ParReduction4( jut CubeD jm, jut Nverts, jut Nsets, jut *AdjMat,

VERTEX *Vertex, SET *Set) --+ Nsets, AdjMat, Vertex, Set

end PREDUCF

ADT B.12I structure PRINTADJM
declare

vojd PriutAdjMat(int Nverts, jut Nsets, int *AdjMat, VERTEX *Vertex,

end PRINTADJMSE *et

IADT B1
structure PRTHELP

declare

PrintHelp()
end PRTHELP
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ADT B.14
structure QUEUE

declare
OpenQueue(Q-.NODE **FrontPtr, Q..NODE **RearPtr) --* FrontPtr, RearPi i3 InsertQueue(Q..NODE **FrontPtr, Q..NODE **RearPtr,

ITEM *NewltemPtr) --+ FrontPtr, RearPtr
Extract Queue(Q -NODE **RontPtr, Q..NODE **RearPtr) -3 ITEM, FrontPtr, RearPtr
CurrentltemlnQueue(Q-NODE **FrontPtr, Q..NODE **NextNodePtr) -

ITEM, FrontPtr, NextNodePtr
AppendQueue(Q-NODE **ToFIrontPtr, Q-NODE **ToRearPtr,

Q..NODE **FromFrontPtr, Q.NODE ** FromRearPtr) -

ToFrontPtr, ToRearPtr, FromFrontPtr, FromRearPtr1 end QUEUE

ADT B.151 structure REDUCE
declare

Reductionl(int Nverts, VERTEX *Vertex) -- BOOLEANI Reduction2(int * *RemovedSets, * Cost OfRemovedSets, int Nverts, int Nsets,
int *AdjMat, VERTEX *Vertex, SET *Set) --* RemovedSets,
Cost OfRemovedSets, Nverts, Nsets, AdjMat, Vertex, Set

Reduction3(int Nverts, it *AdjMat, VERTEX *Vertex) -

Reduction4(jiat Vertex
Redctin4(ntNses, nt*AdjMat, VERTEX *Vertex, SET *Set) -

enIEUENes d~t Vertex, Set

I ADT B.16
structure REMOVEVS

declareU RemoveVertices(int Nverts, int Nsets, int *AdjMat, VERTEX *Vertex) -

Int, Nverts, AdjMat, Vertex
RemoveSets(int Nverts, int Nsets, int *AdjMat, VERTEX *Vertex,I SET *Set) --* Int, Nsets, AdjMat, Vertex, Set

end REMOVEVS

IADT B1
structure SCP

declare

main(int argc, char *argv[], int Nverts, int Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set) --+ Nverts, Nsets, AdjMat, Vertex, Set3end C
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ADT B.18
structure SCPCNTCG

declare
maiu(int argc, char *argv[], int Nverts, int Nsets, jut *AdjMat,

en3CPNC VERTEX *Vertex, SET *Set) --+ Nverts, Nsets, AdjMat, Vertex, Set

3 ADT B.19
structure SCPCNTLB

declare
maiu(iut argc, char *argv[], int Nverts, jut Nsets, int *AdjMat,

VERTEX *Vertex, SET *Set) -- Nverts, Nsets, AdjMat, Vertex, Set
end SCPCNTLB

ADT B.20
structure SGPGNTFGI declare

main(int argc, char *argv[], iut Nverts, int Nsets, int *AdjMat,

end SCCNTFGVERTEX *Vertex, SET *Set) --, Nverts, Nsets, AdjMat, Vertex, Set

ADT B.21
structure SCPNDG

declare
main(int argc, char *argv[], int Nverts, int Nsets, iut *AdjMat,

VERTEX *Vertex, SET *Set) --+ Nverts, Nsets, AdjMat, Vertex, Set
ScpSearch(TABLE-NODE *SetsToSearch, iut *NodeBest~ost, jut Nverts,

jut Nsets, jut *AdjMat, VERTEX *Vertex, SET *Set) -

Int, NodeBestCost, Vertex, Set
end SGPNDCG

NADT B2
structure SCPNDLB

declare

main( jut argc, char *argv[], jut Nverts, jut Nsets, jut *AdjMat,
VERTEX *Vertex, SET *Set) -- Nverts, Nsets, AdjMat, Vertex, Set3 ScpSearch(TABLE..NODE *SetsToSearch, jut *NodeBestCost, jut Nverts,

jut Nsets, jut *AdjMat, VERTEX *Vertex, SET *Set) -

Int, NodeBestCost, Vertex, Set3 LoadBalance(S..NODE *SearchStack)
end SCPNDLB
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ADT B.23
structure SCPNDFG

declare
main(int argc, char *argv[], int Nverts, int Nsets, int *AdjMat,3 VERTEX *Vertex, SET *Set) -- Nverts, Nsets, AdjMat, Vertex, Set
ScpSearch(TABLE-.NODE *SetsToSearch, int *NodeBestCost, int Nverts,

int Nsets, int *AdjMat, VERTEX *Vertex, SET *Set)

end SPNDFG Int, NodeBestCost, Vertex, Set

3 ADT B.24
structure SRLSORTS

declare3MergeSort(char *Baseji, char *Base-j, int NumElements-i, int NumElements..
int ElementWidth, int (*cmpf)O)) --* Base-i, Base.j

QuickSort(char *Base, int NumElements, int ElementWidth,I mt (*cmpf)O)) --+ Base
InsertionSort (char *Base, int NumnElements, int ElenentWidth,

int (*cmpf)Q)) -+ Base
SwapByte(char *aptr, char *bprt, int count)

end SRLSORTS

I ADT B.25
structure SSCPNODE

declareI main(int argc, char *argv[], int Nverts, int Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set) --+ Vertex, Set

SScpSearch(TABLE-.NODE *Table, int *Cost OfCoveringSets,I mt **CoveringSets, LZL-NODE **L,
unsigned long *BestCoverTime, int Nverts, int Nsets,
int *AdjMat, VERTEX *Vertex, SET *Set) --+ Int,I Cost OfCoveringSets, CoveringSets, L, Best CoverTime,
Vertex, Set3end SCND

ADT B.26
structure STACKI declare

OpenStack(S-NODE **TopPtr) -+TopPtr

FlushStack(S-.NODE **TopPtr) -~TopPtrI PushOnStack(S-.NODE **TopPtr, ITEM *NewltemPtr) -*TopPtr

PopOffStack(S-NODE **TopPtr) -*ITEM, TopPtr

end TACKItemslnStack(S-NODE *TopPtr) -* t
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ADT B.27
structure STARTSET

declare
BuildStartingSets(TABLE..NODE *Table, Q..NODE "*Front, Q..NODE **Reai.3 Q.NODE "*Current, VERTEX *Vertex, SET *Set) -

Int, Front, Rear, Current, Set
NodeStartingSets(int NumExpandedLists, int NumSearchers, int MyNID) --+ hit3 NextStartingSet(Q.NODE *FrontPtr, Q-NODE **CurrentPtr, int NumSearch ers.

int MyNID) --* TABLE-NODE, CurrentPtr
BuildlnitialSets(TABLE-.N ODE *Table, int NumSearchers, Q..NODE **QFroiii.3 Q..NODE **Q~ear, VERTEX *Vertex, SET *Set) -

BOOLEAN, QFront, QRear, Vertex
SendAnotherSet(int RequestingNID, Q ..NOD E **QFront,

end STRTSET Q.NODE **QRear) -- * TABLE-NODE, QFront, QRear

3 ADT B.28
structure TABLE

declare3 BuildTable(TABLE-.NODE "*Table, int Nverts, int Nsets, int *AdjMat,
VERTEX *Vertex, SET *Set) --+ BOOLEAN, Table

BuildTableSegment(int *ExpandedSet, int Elements-ES,U TABLE-.NODE *Table) -* TABLE-.NODE
PrintTable(TABLE-.NODE *Table, int Nverts, int Nsets, int *AdjMat,

VERTEX *Vertex, SET *Set)

3n AL PrintTablePointers(TABLE-.NODE *Table)

end TABLE
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3 C. 1 Introduction

The SCP is the problem of finding the minimum number of columns in a 0-1 matrix]

such that all rows of the matrix are covered by at least one element from any column and

the cost associated with the covering columns is optimal (minimum or maximum) (17:39).

As an example, Figure C.1 shows a 0-1 matrix in which the rows are covered by several

different combinations of columns. Columns 0, 1, 2, 3, and 4 form a cover with a total cost

of 27. The optimal cover is columns 0, 3, and 4 with a cost of 15.

3 One serial and three parallel versions of the SCP algorithm are implemented for the

iPSC/2 hypercube. The serial SCP is treated as a separate entity and is stored, compiled.

3 'A 0-1 matrix is a rectangular matrix in which a covered row is denoted by a '' in the covering columns.
If the rows in the matrix represent the vertices of a graph, the existence of an arc between any two vertices
is denoted by a '1' in the column of the matrix.

I
C-1

I



I
I

Sets
0 1 2 3 4 5 6 7

0 1 1 1 0 0 1 0 1I1 1 0 1 0 0 1 0 1

Vertices 2 0 0 0 1 0 0 0 0
3 0 1 0 0 1 0 1 1

S4 0 0 0 0 1 1 1 0

5 1 1 0 0 0 0 1 0
4 7 5 8 3 2 6 5

3 Costs

Figure C.1. 0-1 Matrix for a Set Covering Problem (17:54)I
and executed from a separate directory; whereas, all three parallel programs are contained

3 in the same directory and are invoked from a single host program. The following sections

describe the structure of the serial and parallel programs, the input file structure, the

output statistics, potentially reusable software, and suggested extensions to the programs.

C.2 Structure of Serial SCP Program

As previously stated, all the programs required to compile and execute the serial

programs are contained in a separate directory. A makefile is included to compile and

link the various files. The end result of executing make on the files is an executable file

called scp. The serial SCP options are explained in the following paragraph; Appendix A

* list the structure charts and the abstract data types.

A help screen, Figure C.2, is available and is displayed by typing Scp with no other

arguments. As shown in the figure, the SCP program is executed by typing scp followed

by any options and the input filename. The structure of the input file is described in

* Section C.4 and the options follow:

r - Enables all three reduction techniques: Options 2, 3, and 4. See Sections E.6.4 and 4.5

for a full explanation.

2 - Removes any rows that are covered by only one column. The removed column is

saved and added to the solution upon completion of the search. If this option is

I
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SERIAL SET COVERING PROBLEM (SCP) HELP SCREEN

>scp [r234dlats] File

Options available:

r - Enable all reductions.
2 - Enable reduction U2.
3 - Enable reduction #3.
4 - Enable reduction #4.

d - Enable dominance testing.
1 - Enable lower bound testing.

a - Print the 0-1 matrix.

t - Print the table.
a - Save the reduced/reordered 0-1 matrix to a file.I

Figure C.2. Serial SCP Help Screen

m chosen it is not possible to save (option s) the information contained in the original

0-1 input matrix.

3 - Removes dominated rows. A is dominated if it is a superset of another row.

3 4 - Removes dominated columns. A column is dominated if it is a subset of another row

and has a higher cost.

m d - Includes a dominance test in the search, reference Sections E.6.6 and 4.3. May slow

the algorithm.

m 1 - Includes a lower bound test in the search, reference Sections E.6.7 and 4.4. May slow

the algorithm.

a - Causes the input 0-1 matrix to displayed in its original form and its reordered/reduced

* form.

t - Causes the table to be displayed, reference pages E-12, 3-8- 3-15, and 4-7.

3 s - If specified, allows the user to save the 0-1 matrix. If the filename exists the program

asks for confirmation before proceeding. The user can tell the program to abort the

m write (n), overwrite the file (y), or specify a new filename (f).

C-3



C.3 Structure of Parallel SCP Programs

Three parallel algorithms are implemented and integrated through a common host

algorithm. The host program is called scp and the selection of the algorithm is accom-

plished on the command line by specifying either C, F, or D. As with the serial SCP, a

help screen, Figure C.3, is available and is displayed by typing scp with no other argu-

ments. The options are explained below and Appendix B contains the structure charts

and abstract data types.

3 PARALLEL SET COVERING PROBLEM (SCP) HELP SCREEN

>scp [AlgorithmlOptions] Searchers File

Algorithm I Options:
C - Runs coarse grain SCP program -- GOOD.
F - Runs fine grain SCP program -- BETTER.
D - Runs dynamic load balanced SCP program -- BEST (default).

3 S - Force a serial sort in the parallel search.
P - Force a parallel sort in the parallel search.
r - Enable all reductions.
2 - Enable reduction #2.
3 - Enable reduction #3.
4 - Enable reduction #4.
d - Enable dominance testing.

1 - Enable lower bound testing.
n - Print individual node statistics.
a - Print the 0-1 matrix.
t - Print the table.
s - Save the reduced/reordered 0-1 matrix to a file.

m Searchers:
Number of searching processors = 0---7(default).

S0 - Serial SCP program on one node.

m Figure C.3. Parallel SCP Help Screen

Notice that the help screen lists four morm options and has an input argument calledI Searchers.

I
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C - This option loads and executes the coarse grain parallel SCP algorithms (scpcntcg,

I scpndcg). See Section 4.2.3.1 for the algorithms.

F - This option loads and executes the fine grain parallel SCP algorithms (scpcntfg.

scpndfg). This algorithm has a more efficient load balancing scheme than does the

coarse grain algorithms; therefore, it should execute faster. See Section 4.2.3.2 for

the algorithms.

D - This option loads and executes the dynamic load balanced parallel SCP algorithms

(scpcntlb, scpndlb, lbproc). These algorithms are similar to the fine grain algo-

* Irithms except that the capability to balance the load dynamically has been added.

See Section 4.2.3.3 for the algorithms. Notice that this selection is the default; there-

* fore, should the command line contain an entry similar to:

>scp filename

I the host program will select the dynamic load balanced algorithms and the maximum

number of processors available on the computer.

I S - The normal operation of the sorting algorithms is to execute a parallel or serial sort

depending on the number of elements to be sorted. This option forces the parallel

SCP algorithms to sort the elements using a serial quick sort or insertion sort.

P - Forces the parallel SCP algorithms to execute a parallel bitonic merge sort.

r - Enables all three serial or parallel reduction techniques: Options 2, 3, and 4. If the

specified SCP search algorithm is parallel, then the reductions are parallel, else the

reductions are serial. See Sections E.6.4 and 4.5 for a full explanation of the serial

and parallel reduction algorithms.

2 - Removes any rows that are covered by only one column. The removed column is

saved and added to the solution upon completion of the search. If this option is

chosen it is not possible to save (option s) the information contained in the original

3 0-1 input matrix. Always a serial algorithm.

I
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I
3 - Removes dominated rows. A is dominated if it is a superset of another row. May be

parallel or serial.

4 - Removes dominated columns. A column is dominated if it is a subset of another row

and has a higher cost. May be parallel or serial.

d - Includes a dominance test in the search, reference Sections E.6.6 and 4.3. May slow

the algorithm.

I - Includes a lower bound test in the search, reference Sections E.6.7 and 4.4. May slow

the algorithm.

Sn -This option displays the searching processor statistics in addition to the default

display which only shows the run-time statistics for the controlling processor.

a - Causes the input 0-1 matrix to displayed in its original form and its reordered/reduced

form.

I t - Causes the table to be displayed, reference pages E-12, 3-8- 3-15, and 4-7.

s - If specified, allows the user to save the 0-1 matrix. If the filename exists the program

asks for confirmation before proceeding. The user can tell the program to abort the

write (n), overwrite the file y), or specify a new filename (f).

The Searchers argument specifies the number of searching processors. The user may

select any number from '0' to the one less than the maximum number of nodes contained

on the iPSC/2. Notice that selecting '0' searchers loads and executes a serial program.

This option is included allow the user to run-time statistics for a serial SCP algorithm

executed on one of the node processors. In most instances, the execution times are shorter

on a node than they are on the host because no context switch time is incurred on a

node processor. Furthermore, since the node processor is not shared with other users or

I processes, the programs require less real-time to finish.

Should the user select more searching processors than are currently available, the

SCP program prints the following message (# is the number of nodes):

I # node(s) not available, retrying ...

IC-6
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I
and then enters a loop where it continually waits ten seconds and tries again to acquire

the proper number of nodes. The program does not exit this loop until it gets the nodes

or the user aborts the program. Remember that the number of nodes acquired is always

2d; therefore, if the user selects four searchers, a cube of dimension 3 (i.e., eight nodes)

is required to execute the programs with four searching processors and one controlling

I processor.

I C.4 Structure of Input 0-1 Matrix

The 0-1 matrix is entered into the program via a file. The input file must include
the number of rows and columns, the matrix proper, and the column costs. Figure C.4

is a typical input matrix. The first seven lines in the example are comments and are not

# Filename: chris.dat
# Number of Vertices: 6

# Number of Sets: 8
# Density of l's: 0.416667
# Cost range: [2,8]

* 6
8
11000010
10100101
00001110
00010000
01001011
11100101
47583265

Figure C.4. Input File Format for the SCP

H required; however, they are added to any output file that the SCP programs write by

specifying option s in the command line. The file input algorithm considers any line in

the beginning of the file which starts with a # as a comment. The first line without a #

ends the comment header and no other comments are recognized. The first line after the

comments must be the number of rows and the second line is the number of columns in

I
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the 0-1 matrix. The 0-1 matrix is entered in the following lines. The last line of the file

I contains the column costs (> 0) with each cost separated by a blank space.

C.5 Output Displays

Upon completion of the search, the optimal solution, matrix data, and run-time

statistics are displayed to the terminal. The matrix data consists of the input 0-1 matrix,

the reordered/reduced 0-1 matrix, and the table; whereas, the run-time statistics consist

of search time, total time, number of nodes expanded, and various other information

depending on the option chosen and the particular program executed.

C.5.1 0-1 Matrix Display The 0-1 matrix is displayed if the user selects option

a on the command line. Furthermore, the reduced/reordered 0-1 matrix displayed may

appear different between consecutive runs on the same input data depending on whether

any reductions (i.e., r, 2, 3, 4) were chosen. The following display is the matrix for the

data of Figure C.4 with options 3 and 4 chosen:

The original matrix(6X8):
Row 0) 11100101

Row 1) 10100101
Row 2) 00010000
Row 3) 01001011
Row 4) 00001110

Row 5) 11000010

Set Columns:

01234567

Set Costs:

47583265

Reduced matrix(4XS):
Row 1) 10101
Row 3) 01011

Row 4) 01110

Row 5) 10010

I
C-8I



U
I
3 Set Columns:

04567

Set Costs:
43265

Reordered matrix(4X5):
Row 5) 00101
Row 1) 10110

Row 3) 01011
Row 4) 11001

Set Columns:
54076

Set Costs:
23456

The original matrix matrix displays the input 0-1 matrix, its dimensions, and the

3 column (set) costs. The reduced matrix is the 0-1 matrix after the specified reductions are

finished. The reordered matrix is the 0-1 matrix following sorts on the rows and columns.

The rows are sorted in ascending order according to the cardinality of the rows and the

columns are sorted in ascending order according the their costs. In the case of the parallel

algorithms, the reduced and reordered matrices are combined into one reordered/reduced

matrix display.I
C.5.2 Table Display A table is constructed for every search may be displayed by

3 specifying option t on the command line. The displayed table, as shown, is merely a

representation of the table constructed by the algorithms. The actual table consists of

pointers into vectors which point to the 0-1 matrix as illustrated in Figure 3.1. Even

so, the displayed table is an accurate representation of the internal data structures. The

* following table is for the reduced matrix shown previously:

9
I
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3 The table:

Block 0 sets: (0, 6)
Block 0 set costs: (4, 6)
Block I sets: (5, 0, 7)
Block 1 set costs: (2, 4, 5)
Block 2 sets: (4, 7, 6)

Block 2 set costs: (3, 5, 6)
Block 3 sets: (5, 4, 6)
Block 3 set costs: (2, 3,6)

Vertex 5) 11000000000
Vertex 1) 10111000000
Vertex 3) 01001111000
Vertex 4) 01100101111

C.5.3 Optimal Solution The optimal solution is displayed next. It consists of the

3 covering sets and the cost. Note that the covering sets refer to the original 0-1 matrix.

The following display segment is the solution to the previous example:I

Covering Sets are:

(043)

3 Cost = 15

The search graph for this optimal cover is shown in Figure C.5 and is based on a

search of the table in Section C.5. Since the table represents the reduced matrix, it does

not contain column 3. This column is removed by Reduction #2 and is later added to the

final solution of the reduced matrix. The search proceeds in the following manner:

m 1. Select column 0 from the table and added to the list of covering columns.

2. Select column 4 from the table and added to the list of covering columns.

3. A cover of the rows exists and it is less than the best cover found so far; therefore,

3 save the list of covering columns and the cost.

4. Backtrack from node 4 to node 0.

1C-10
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COST COST
i=7 EXCEEDED EXCEEDED

COVER

Figure C.5. Serial Search Graph for the Input Matrix of Figure C.4

I5. From node 0, consider column 7 for a covering column. The addition of column 7

can not result in a lower cost cover; therefore, try next column.

6. From node 0, consider column 6 for a covering column. The addition of column 6

* can not result in a lower cost cover and all columns have been exhausted; therefore,

backtrack to node S.

* 7. Select column 6 from the table and add to the list of covering columns.

8. Consider the column 5 from the table. The addition of column 5 will exceed the best

cost obtained thus far; therefore, it can not lead to a better solution.

9. Same argument holds for columns 0 and 7.

10. Search is complete, exit with the optimal cover consisting of columns 0 and 4 for a

* summed cost of 7.

11. Add co .,mn 3 removed by reduction #2 to the optimal solution. Optimal solution

is now columns {0, 4, 3} for a total cost of 15.

C.5.4 Output Statistics The final portion of the display consists of the run-time

statistics. Each version of the algorithms includes slightly different information in its

1
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display. The times presented in the displays are CPU time for the serial program executing

on the host and wall-clock time for all versions of the parallel programs executing on the

node processors (35:3-53).

Serial Algorithm Statistics This section shows the output display from the

serial SCP program which executes on the host processor.

The Statistics:
Time to reduce matrix = 0.020000 seconds.

Time to sort = 0.010000 seconds.
Time to build the table = 0.010000 seconds.
Time to search the tree = 0.010000 seconds.
Expanded 3 nodes of the search tree.
Total time = 0.050000 seconds.I
Time to reduce matrix - This is the cumulative time to apply all user requested re-

* ductions to the 0-1 matrix.

Time to sort - Cumulative time to sort the Vertex and Set vectors.

I Time to build the table - Time required to build the internal representation of the

table.

Time to search the tree - The time for the serial program to search the tree. Does

m not include any of the above mentioned times.

Expanded ? nodes of the search tree - The number of nodes expanded in the search

tree.

Total time - Total CPU time to execute the SCP program including all the above times.I
Parallel Algorithm Statistics Each processor in the the parallel algorithms

searches a separate portion of the search tree. Consider a parallel search of the search

graph in Figure C.5 by two searching processors. Processor 1 is instructed to search the

left subbranch beginning with node 0 and Processor 2 is instructed to search the right

subbranch beginning at node 6. The optimal solution for this example does not change.

I C- 12
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The important component of the optimal solution is the cost. The list of covering sets may

m vary, but the optimal cost can not change.

The parallel algorithms always display the run-time statistics for the control processor

and will display statistics from each searching processor if option n is entered on the

command line. The following displays show the statistics for options r, n, a, t, and one

searching processor for each of the three parallel algorithms. Rather than repeat redundant

information, a description of all the coarse grain algorithm statistics is given and then only

those statistics which change or are new are described for the fine grain and dynamic load

* balanced algorithms:

Coarse Grain Program Statistics:

3 NODE 1 Stats:
Time to build table = 0.007 seconds.
Time to build the subgraphs = 0.003 seconds.
Time spent searching = 0.003 seconds.
Number of subgraphs searched = 10.
Expanded 0 nodes of the search tree.
Total processor time = 0.038 seconds.

Control Node (Node 0) Stats:
Time to reduce (4X5) = 0.011 seconds.
Time to sort = 0.008 seconds.
Time to search the tree = 0.014 seconds.
Time until best cover was first found = 0.013 seconds.
Total time = 0.042 seconds.

m Sent 3 global costs to the searching processors.
Total number of expanded nodes = 0.
Overall search efficiency (0.003/(1*0.042)) = 7.1%.

Time to build the table - Time required to build the internal representation of the

I table.

Time to build the subgraphs - This is the time to build the subgraphs so that each

searching processor receives at least one subgraph.

I
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Time spent searching - Time spent searching for a cover. Does not include any other

time (i.e., time to build the table, reduce).

Number of subgraphs searched - The number of subgraphs searched from the list of

subgraphs.

Expanded 0 nodes of the search tree - The number of search tree nodes expanded

by the processor. Does not include the nodes already expanded in the subgraph.

Total processor time - Total time that the processor worked on the search. Includes

all other times.

I Time to reduce - This is the cumulative time to apply all user requested reductions to

the 0-1 matrix. May be serial or parallel reductions.

I Time to sort - Cumulative time to sort the Vertex and Set vectors. May be a serial

* or parallel sorting algorithm.

Time to search the tree - Time from when the controller starts the search until the

3 last searching processor terminates.

Time until best cover was first found - Time from the beginning of the search until

the optimal cover was sent to the controller. Does not include the time required to

finish the search.

3 Total time - Total time on the controller to receive the base data structures and to

complete the search.

I Sent 3 global costs - The number of times the controller sent new global best costs to

* the searching processors.

Total number of expanded nodes - Total nodes expanded by all searching proces-

3 sors.

Overall search efficiency - Sum of the processor search times divided by product of

3 the number of searchers (i) and the total time:

S" SearchTime

m x TotalTime
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3Fine Grain Program Statistics:
NODE I Stats:
Time to build table = 0.008 seconds.
Time spent waiting for subgraphs to search = 0.021 seconds.
Time spent searching = 0.002 seconds.
Search efficiency (0.002/0.023) = 8.7%.
Number of subgraphs searched = 5.
Expanded 1 nodes of the search tree.
Total processor time = 0.054 seconds.

Control Node (Node 0) Stats:
Time to reduce (4X5) = 0.010 seconds.
Time to sort = 0.008 seconds.
Time to build the table = 0.001 seconds.
Time to search the tree = 0.031 seconds.
Time until best cover was first found = 0.030 seconds.
Total time = 0.059 seconds.

Sent 2 global costs to the searching processors.
Total number of expanded nodes = 1.
Overall search efficiency (0.002](C10.059)) = 3.4%.

3 Time spent waiting for subgraphs to search - Since the controller is now expand-

ing the subgraphs, the searchers must wait for a subgraph to arrive before starting

3 the search algorithm. This time is the cumulative time the searching processor spent

waiting for subgraphs either at the beginning of the search or after requesting a

3 another subgraph.

Search efficiency - Search time divided by the time spent searching and waiting for

subgraphs:

I
3 Dynamic Load Balanced Program Statistics:

NODE 1 Stats:
Time to build table a 0.008 seconds.
Time spent waiting for subgraphs to search = 0.045 seconds.
Time spent doing dynamic load balancing = 0.000 seconds.

C
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Time spent searching = 0.003 seconds.

Search efficiency (0.007/0.031) = 6.3%.
Searched a total of 3 subgraphs, 0 from load balancing.
Expanded 4 nodes of the search tree, 0 from load balancing.I Total processor time = 0.125 seconds.

Control Node (Node 0) Stats:
Time to reduce (4X5) = 0.011 seconds.
Time to sort = 0.008 seconds.
Time to build the table = 0.001 seconds.
Time to search the tree = 0.057 seconds.
Time until best cover was first found = 0.010 seconds.
Time when dynamic load balance started - 0.035 seconds.
Total time = 0.165 seconds.

Sent 1 global costs to the searching processors.
Total number of expanded nodes = 4.
Overall search efficiency (0.007/(1*0.142)) = 1.8%.

m Time spent waiting for subgraphs to search - Includes the time spent waiting for

subgraphs from the controller and other searching processors as a result of a request

for a subgraph during the dynamic load balancing phase of the algorithm.

Time spent doing dynamic load balancing - Time spent breaking off subgraphs to

share with other searching processors.

Time spent searching - Does not include the time spent doing dynamic load balancing

or waiting for subgraphs.

m Time when dynamic load balance started - Time when the token was fired by the

controller.I
C.6 Reusable Software

I The construction of reusable parallel programs is difficult at best; however, the algo-

rithms presented here are adaptable to many programs executing on an iPSC/2.

C.6.1 Parallel Bitonic Merge Sort The paral!J sort employed in the SCP is an

enhanced version of a bitonic merge sort obtained from Quinn (50:93-94). Quinn's version

of the algorithm assumes 2d items are to be sorted in ascending order on 2d processors.

I
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His algorithm is modified to allow any size input data to be sorted in either ascending or

descending order on 2d processors, reference Section 4.6 of this thesis for the algorithm. To

invoke the parallel sort, each processor executes a command with the following prototype:

int ParSort(int Order, char *Base, int NumElements, int ElementWidth,

int (*cmpf)(0, int (*apadf)(), int (*rpadf)(), int CubeDim);

where Order is ASCENDING or DESCENDING, Base is a pointer to the beginning of the

data to be sorted, NumElements is the number of items pointed to by Base, ElementWidth

is the size of the items pointed to by Base, (*cmpf) () is a user supplied function to

compare two items, (*apadf) () is a user supplied function to add a padding item to the

data, (*rpadf) () is a user supplied function to remove a padding item from the sorted

data, and CubeDim is the dimension of the cube.

The bitonic merge must execute on all 2 d processors in a synchronous manner. In

order to accomplish this, a single processor divides the data between all processors (in-

cluding itself) and then enters the sort algorithm along with the other processors. If the

number of items to be sorted is not divisible by 2 d, then some of the processors must pad

their received data set because they have received one less item than everyone else. The

routine to pad the input data must be supplied by the user since the pad value depends

on the type of data to be sorted. For example, the SCP programs sort the Vertex vector

in ascending order based on the cardinality of the rows. The add pad function simply

inserts a -MAXINT in the cardinality field of the record succeeding the last Vertex record

received if the processor received one of the smaller Vertex vectors. When the records are

finally sorted and collected by the controlling processor, all the padding is at the front of

the slightly enlarged Vertex vector. A user supplied function is then employed to remove

* all padding at from the vector leaving the properly sorted Vertex vector.

When all data is partitioned to the processors and any necessary padding has been

added, all processors execute the bitonic merge sort. Each processor must first sort its

input list of data; hence, a quick sort is executed. Following the quick sort, the processors

send and receive lists according to the algorithm. Since, the quick sort is generic, it requires

a user supplied function (cmpf) to compare the individual elements. Cmpf must return a

I
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'1' if two input items are out of order, a '0' if they are equal, and a '-1' if they are in

I order. For the case of the Vertex vector, cmpf compares the cardinality fields of two input

records.

A file containing examples routines to sort a list of integers is provided in the directory

with the parallel SCP algorithms under /Sortbmerge, ex. In order to call this program,

each processor must execute the following command:

I
int ParSort(ASCENDING, (char *)List, NuElements, sizeof(int),

Ascending, Pad, Unpad, CubeDim);

Where List is the list of integers to be sorted and CubeDim is the dimension of the

* cube.

C.6.2 Dynamic Load Balancing Algorithm As discussed in Section 4.2.3.3, the fine

grain algorithm performs better than the coarse grain algorithm but searching processors

still exhibit relatively long idle periods. The idle periods are a result of a load imbalance

since the finished searchers are waiting for all searchers to terminate. The addition of

* a dynamic load balancing algorithm to the fine grain algorithm decreases the processor

idle-times and leads to a decrease in the overall solution time.

The dynamic load balancing algorithm consists of four logical units. The major unit

is a, load balancing algorithm which exists as a separate process on the controller and all

searchers. This algorithm is solely responsible for coordinating the sharing of subgraphs.

The other three logical units are interfaces to the load balancing process. One interface is

required on the controller to initiate the dynamic load balancing algorithm; whereas, two

interfaces are required on the searchers to request and share subgraphs.

The searchers request subgraphs from the controller until the controller's list of sub-

graphs is depleted. When a searcher requests another subgraph and is informed that the

controller has no more subgraphs, it requests a subgraph from its load balancing process.

The load balancing process waits for the token to arrive and then polls working proces-

sors for a subgraph. If it receives a subgraph, it passes the subgraph to the searcher and

then passes the token to the next processor. Notice that the searching processes do not

I C-18
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communicate with each other. The load balancing process coordinates intrasearcher com-

I munications and subgraph sharing and it is allowed to communicate with other searchers

only when it has the token. These two restrictions on the dynamic load balancing scheme

* prevent deadlock and a race condition from occurring.

The final interface between a searching process and a load balancing process shares a

subgraph. When a load balancing process receives a request for a subgraph, it immediately

requests the subgraph from its searching process. The searching process must interrupt

its search process and partition its subgraph. The searcher then sends a subgraph, or an

empty subgraph, to the load balancing process which relays the subgraph to the requesting

load balancing process.

The algorithms for the dynamic load balancing algorithm are in Section 4.2.3.3. Code

segments are available in the directory containing the parallel source code in a directory

called LoadBal; whereas, SCP routines scpcntlb.c, scpndlb.c, and lbproc.c contain

the dynamic load balancing algorithms.

I
C. 7 Program Extensions

The following extensions are suggested:

e The column costs in the input matrix must be greater than zero. Typically, this is

not a problem; however, it is conceivable that a user may want to search matrices

with zero costs. To add this capability to the programs requires modifications in not

only the search routines, but also the reduction, dominance test, and lower bound

* test routines.

* The maximum number of processors displayed on the parallel SCP help screen is

hard coded in scpgbl.h. A convenient system variable is not available to read the

value; therefore, if the size of the iPSC/2 increases, NAXDIM in scpgbl.h must be

* changed and the programs recompiled.

I
I
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3 Appendix D. Raw Test Result Data

List of Tables
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Table D.5 Coarse Grain Parallel SCP Statistics ................................ D-53 Table D.6 Fine Grain Parallel SCP Statistics ................................... D-8

Table D.7 Dynamic Load Balanced Parallel SCP Statistics .................... D-11

Table D.8 Tabulated Speedup Data ........................................... D-14

I This appendix contains the raw test results from the execution of the serial and

parallel SCP programs. The actual printouts from the tests are not given since they are

quite large; however, they are available in directory /results.

I Table D.1 - Shows the optimal solution and a corresponding list of covering sets to

the twenty-nine test problems. These solutions were obtained from the serial SCP

I algorithm executed on AFIT's hypercube. The names of the matrices indicate the

contents of the problem. For instance, matrix 100.100.49 is a 100 x 100 matrix with

I a l's density of 0.49. Matrix 75.125.25.U is a 75 x 125 matrix with a l's density of

0.25 and unit cost columns. Matrix 100.100.30.vl is version 1 of a 100 x 100 matrix

with a l's density of 0.30. In addition to the naming scheme, the beginning of these

problems contain a header (ref. Figure C.4) to indicate the name, size, and density

I of the matrix.

Table D.2 - Execution times for the sorting and reduction algorithms. The serial times

are the algorithms executed by the serial SCP program and the parallel times are

from the dynamic load balanced parallel SCP algorithm executed on three different

cube dimensions since the parallel sort and reduction algorithms require 2 d processors

I
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where d is the dimension of the cube. The serial sort algorithm is a quick sort and

the parallel sort is a bitonic merge sort. These times were collected at AFIT.

Table D.3 - The maximum time that a searching processor was idle during a search of

the test matrix. This time is the maximum obtained for any number of processors.

The data is obtained from Intel's hypercube.

Table D.4 - A serial SCP program is available which executes on a node processor

rather than the host processor. This program is a strict serial program and it con-

tains no parallel algorithms. It is executed on a node processor because the node

3 processors are single user; hence, all CPU time is dedicated to the single user and

the program finishes sooner. This table shows the elapsed time from the beginning

3 of the search until the best cost was last updated (BCT), the search time (ST), the

total execution time (TT), and the ,Lnmber of search tree nodes expanded (EN). Only

3 the solution times for the five most time consuming test matrices is shown since the

rest of the matrices are solved much too quickly for use in comparing the serial and3 parallel search algorithms. These times are the base times from which the speedup

is calculated were obtained from Intel's hypercube.

3 Tables D.5, D.6, and D.7 - These tables contain the same four measurements shown

in Table D.4 (i.e., BCT, ST, TT, and EN) for the same five test matrices searched

3 on Intel's hypercube. The searchers column refers to the number of processors

searching the input matrix and ranges from 1 to 31 searching processors.

I Table D.8 - The speedup obtained when searching one of the five test matrices for 1-31

searching processors. The speedups are computed by dividing the times displayed in

Table D.4 by the search times (ST) displayed in Tables D.5, D.6, and D.7.

I
I
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Table D.1. Test Matrix Solutions

Matrix Cost Covering Sets
10.10.53 322 {8 0}
100.100.26.U 6 {0 4 52 30 44 36}
100.100.27.U 6 {4 87 3 28 92 44}
100.100.28.U 6 {2 6 36 38 3 82}
100.100.30.vl 629 {76 32 67 29 90 96 45}
100.100.30.v2 684 {46 38 36 6 71 86 52 34}
100.100.30.v3 540 {18 50 85 79 35 99 24 94 51}

100.100.35.vl 500 {38 0 22 80 83 56 3}
100.100.35.v2 381 {13 51 27 54 56 84 10 96}
100.100.35.v3 496 {O 60 59 25 9 79 47}
100.100.40.vl 369 {62 36 22 29 31 66 52}
100.100.40.v2 478 {81 39 97 49 57 64}
100.100.40.v3 258 {31 62 97 26 5 11}
100.100.49 67 {32 15 91 90 84}
100.100.50.vl 133 {70 87 80 0 75 92}
100.100.50.v2 425 {80 26 3 67 92}

100.100.50.v3 311 {81 49 36 94}
20.20.05 3058 {0123456789 101112 13 14 15 16 17 18 19}
20.20.43 503 16 14 16 1 19}I 20.20.46 482 {6 14 16 19}
20.20.51 50 {6}
20.20.54 75 {1 17 19}
30.30.45 107 {3 24 17 10}
40.40.41 164 {25 14 38 12}

50.50.52 149 {30 41 36 46}

70.70.08.U 16 {29 38 21 27 9 45 24 5 8 56 42 0 54 65 37 44}
75.125.25.U 5 {116 47 10 69 101}
75.75.50 109 {2 66 60 39 59}

chris 15 {3 4 0}

I
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Table D.2. Support Times for Matrix 1000.700.50 (seconds)

Parallel
Function Serial 2 4 8
Sort 0.49 0.35 0.23 0.22
Reduce 55.95 39.21 36.45 37.32

Table D.3. Maximum Searcher Idle-Time (seconds)

Matrix Coarse Grain Fine Grain Load Balance
100.100.28.U 1065 395 42
100.100.27.U 678 357 40
100.100.26.U 348 329 33
75.125.25.U 85 152 19
70.70.08.U 198 1444 42

Table D.4. Serial Node Statistics

Matrix BCT ST TT EN
100.100.28.U 100.4 6925.5 6925.8 3479327
100.100.27.U 5142.7 10943.8 10944.2 5578362
100.100.26.U 228.5 5578.5 5578.8 2806938
75.125.25.U 9351.3 9362.9 9363.2 6264322
70.70.08.U 2010.2 4443.3 4443.4 3877337

BCT: Time when best cover was initially found.
ST: Search time.
TT: Total program execution time.
EN: Number of expanded nodes
Time is in seconds.
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Table D.5. Coarse Grain Parallel SCP Statistics

100.100.28.U 100.100.27.U
Searchers BCT ST TT EN BCT ST TT EN

1 32.7 19090.7 19090.9 10797313 4403.3 21004.5 21004.7 11765704
2 32.8 9751.0 9751.2 10815454 927.5 9293.4 9293.6 10378245
3 32.7 6633.3 6633.5 10833420 903.5 6497.2 6497.4 10830299

4 31.2 5100.9 5101.2 10847710 903.4 5107.6 5107.8 11326037
5 0.5 3927.5 3927.8 10779589 902.9 4640.0 4640.3 11827011

6 0.5 3457.3 3457.5 10779696 902.9 3679.0 3679.3 12306503
7 0.5 3117.4 3117.6 10779805 902.9 3626.1 3626.3 12785815
8 0.5 2742.5 2742.7 10779905 902.9 3286.5 3286.7 13284606
9 0.5 2334.5 2334.7 10780009 389.4 2444.9 2445.1 11267453

10 0.5 2268.1 2268.4 10780130 389.4 2425.4 2425.7 11474401
11 0.5 1970.5 1970.8 10780242 389.4 2408.4 2408.7 11685007
12 0.5 2269.5 2269.7 10780351 387.5 1803.2 1803.4 11891900
13 0.5 1908.9 1909.2 10780448 371.7 1767.2 1767.5 11988161
14 0.5 1583.8 1584.0 10780552 387.5 1796.2 1796.4 12312357
15 0.5 1565.9 1566.1 10780649 386.5 1771.1 1771.4 12517949
16 0.5 1576.2 1576.4 10780747 387.5 1730.2 1730.4 12739724
17 0.5 1507.4 1507.7 10780858 379.8 1432.4 1432.7 12883412
18 0.5 1186.2 1186.5 10780941 387.5 1439.6 1439.8 13166684
19 0.5 1185.5 1185.8 10781052 387.5 1440.0 1440.2 13379122
20 0.5 1186.3 1186.5 10781140 384.9 1437.5 1437.8 13574698

21 0.5 1187.0 1187.3 10781240 384.9 1400.1 1400.4 13782799
22 0.5 1159.7 1160.0 10781336 384.9 1397.2 1397.4 13994800
23 0.5 1169.1 1169.3 10781430 384.9 1399.2 1399.5 14202394
24 0.5 1168.6 1168.9 10781525 384.9 1409.8 1410.1 14411799
25 0.5 1115.7 J116.0 10781619 384.9 1393.9 1394.1 14625957
26 0.5 1115.7 1116.0 10781713 27.5 1052.8 1053.0 9759962
27 0.5 1114.0 1114.3 10781808 27.5 1064.1 1064.4 9774623
28 0.5 794.9 795.2 10781904 27.5 1064.2 1064.5 9789384
29 0.5 1101.2 1101.5 10781994 27.5 1064.2 1064.5 9804006
30 0.5 1115.2 1115.5 10782092 27.5 1064.2 1064.4 9819343
31 0.5 1115.7 1116.0 10782175 27.5 1064.6 1064.8 9834373

BCT: Time when best cover was initially found.
ST: Search time.
TT: Total program execution time.
EN: Number of expanded nodes
Time is in seconds.

D-5



I
I
I
I

Table D.5 (Continued). Coarse Grain Parallel SCP Statistics

100.100.26.U 75.125.25.U
Searchers RCT ST TT EN BCT ST TT EN

1 2950.9 7636.7 7636.9 4295730 7612.3 7715.0 7715.3 5670010
2 2831.5 5115.0 5115.2 5783216 3491.3 3548.1 3548.3 5196359
3 88.1 1735.1 1735.3 2838990 2728.6 2770.5 2770.8 6104401

4 88.1 1338.5 1338.8 2888152 1922.4 1955.8 1956.0 5717210
5 88.1 1237.2 1237.5 2939072 1522.5 1552.8 1553.1 5693529
6 88.1 920.3 920.5 2988141 963.5 989.7 989.9 4269222
7 88.1 901.9 902.1 3038501 632.8 656.4 656.6 3337394
8 88.1 865.8 866.1 3088695 610.2 631.7 632.0 3656328
9 88.1 828.3 828.6 3136763 563.1 585.9 586.1 3788437

10 9.3 750.6 750.9 2738976 610.2 629.6 629.9 4508604
11 9.3 728.5 728.8 2744058 589.7 608.5 608.8 4779938
12 9.3 441.0 441.3 2749052 594.4 612.3 612.6 5212828

13 9.3 441.9 442.2 2754286 550.5 567.9 568.2 5244602
14 9.3 426.2 426.5 2759241 13.0 156.7 157.0 1577373
15 9.3 425.2 425.4 2764166 139.0 156.5 156.7 1673401
16 9.3 409.9 410.2 2769139 139.0 156.1 156.4 1770799
17 9.3 411.1 411.4 2774041 139.0 155.6 155.9 1866856
18 9.3 408.7 409.0 2779084 139.0 155.5 155.8 1919056
19 9.3 395.7 396.0 2784155 139.0 155.6 155.8 2015936
20 9.3 397.0 397.2 2789013 139.0 154.6 154.9 2116906
21 9.3 395.3 395.6 2793886 139.0 154.6 154.9 2109268
22 9.3 395.2 395.5 2799109 139.0 154.9 155.1 2156475
23 9.3 393.9 394.2 2804148 139.0 154.0 154.3 2221447

24 9.3 379.3 379.6 2809007 139.0 154.1 154.4 2260670
25 9.3 378.3 378.6 2813930 139.0 154.0 154.3 2267809
26 9.3 380.5 380.7 2818978 139.0 154.0 154.3 2308040
27 9.3 378.4 378.7 2824066 139.0 153.6 153.9 2362605
28 9.3 378.9 379.1 2829030 139.0 153.2 153.5 2426202
29 9.3 379.5 379.8 2834024 139.0 153.2 153.5 2437326
30 9.3 379.2 379.4 2838872 139.0 153.4 153.7 2443148
31 9.3 378.5 378.8 2844085 139.0 153.4 153.6 2452956

BCT: Time when best cover was initially found.
ST: Search time.
TT: Total program execution time.
EN: Number of expanded nodes
Time is in seconds.
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Table D.5 (Continued). Coarse Grain Parallel SCP Statistics

70.70.08.U
Searchers BCT ST TT EN

1 823.6 3453.9 3454.0 3233898
2 303.8 1637.9 1638.1 3039127
3 195.4 1161.4 1161.6 3035211
4 195.4 860.9 861.0 3178526
5 189.5 782.9 783.1 3300086
6 62.8 637.1 637.3 2888874
7 62.8 512.6 512.8 2937258
8 62.8 420.3 420.5 2984539
9 62.8 402.9 403.1 3031988

10 62.7 371.2 371.3 3078842
11 62.7 369.7 369.9 3127027
12 62.7 352.6 352.8 3174332

13 62.7 326.4 326.6 3221604
14 62.7 332.3 332.5 3265880
15 62.7 327.0 327.2 3310124
16 62.7 250.6 250.8 3353412
17 62.7 282.9 283.1 3396651
18 62.7 282.9 283.0 3442657
19 62.7 289.1 289.3 3488665
20 62.7 288.9 289.1 3533325
21 62.7 281.4 281.5 3578050
22 62.7 281.6 281.8 3622244
23 62.7 287.4 287.6 3666545
24 62.7 287.7 287.8 3709771
25 62.7 287.4 287.6 3753033
26 62.7 282.3 282.5 3799023
27 62.7 287.5 287.7 3845078
28 62.7 287.6 287.8 3889571
29 62.7 287.4 287.6 3934332
30 62.7 282.3 282.4 3980999
31 62.7 282.3 282.5 4027627

BCT: Time when best cover was initially found.
ST: Search time.
TT: Total program execution time.
EN: Number of expanded nodes
Time is in seconds.
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Table D.6. Fine Grain Parallel SCP Statistics

100.100.28.U 100.100.27.U
Searchers BCT ST TT EN BCT ST TT EN

1 148.2 6622.7 6622.9 3687497 5287.1 10527.2 10527.3 5935841
2 69.4 3468.2 3468.4 3682229 2644.5 5286.0 5286.3 5936310
3 56.0 2336.0 2336.2 3698337 1746.5 3678.9 3679.1 5909099

4 31.2 1876.3 1876.6 3674434 1321.1 2683.6 2683.9 5933016
5 27.2 1470.7 1471.0 3680854 926.0 2214.1 2214.3 5572711
6 24.2 1166.1 1166.3 3685586 883.7 1873.1 1873.3 5941782
7 23.0 1122.3 1122.5 3694223 531.7 1512.5 1512.7 5079816
8 21.1 1082.4 1082.6 3698111 495.5 1190.2 1190.4 5207998
9 20.1 798.4 798.7 3704545 487.1 1168.2 1168.4 5440144

10 19.1 776.6 776.9 3709939 464.4 1132.8 1133.0 5576679
11 18.1 753.7 753.9 3714594 457.0 1113.8 1114.1 5785604
12 17.1 736.7 737.0 3717880 445.1 1087.9 1088.1 5960363
13 17.1 734.0 734.3 3727005 101.7 758.2 758.4 3747866
14 17.0 717.4 717.7 3736301 101.4 757.0 757.2 3801246
15 16.1 704.6 704.9 3737579 99.8 755.0 755.3 3843267
16 16.1 703.1 703.4 3745773 81.7 451.9 452.2 3738898
17 16.0 442.8 443.0 3754164 80.3 452.7 452.9 3771077
18 16.0 445.2 445.5 3762641 79.9 451.5 451.8 3811261
19 15.2 428.6 428.8 3762019 66.2 438.5 438.8 3708021
20 14.3 427.1 427.4 3759498 66.0 438.0 438.3 3742168
21 14.2 426.2 426.4 3766641 66.0 438.0 438.3 3777661
22 13.3 425.3 425.5 3762989 66.0 437.5 437.8 3813236
23 13.3 425.9 426.2 3770066 65.8 437.1 437.3 3847844

24 13.3 425.8 426.0 3776597 61.5 432.4 432.6 3824981

25 13.3 425.4 425.7 3783547 61.4 432.0 432.3 3857064
26 13.2 425.0 425.3 3790043 61.4 432.2 432.5 3890799
27 13.2 424.5 424.8 3797040 61.4 420.9 421.2 3923863
28 13.2 425.1 425.4 3804077 61.3 420.8 421.1 3956600
29 13.2 425.1 425.4 3811031 61.2 420.8 421.0 3987824
30 12.4 424.4 424.7 3802772 60.5 416.4 416.7 4000502
31 12.4 424.4 424.6 3809159 60.3 415.9 416.2 4040440

BCT: Time when best cover was initially found.
ST: Search time.
TT: Total program execution time.
EN: Number of expanded nodes
Time is in seconds.
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Table D.6 (Continued). Fine Grain Parallel SCP Statistics

100.100.26.U 75.125.25.U
Searchers BCT ST TT EN BCT ST TT EN

1 1978.9 7355.6 7355.8 4199069 9512.1 9522.9 9523.1 6939581
2 985.9 3706.3 3706.5 4194865 4618.8 4629.6 4629.9 6707162
3 659.8 2650.3 2650.5 4198520 3221.4 3232.2 3232.4 6922129
4 485.9 1847.3 1847.5 4178267 2248.2 2259.0 2259.3 6534780
5 386.5 1682.9 1683.1 4170367 1761.6 1772.4 1772.7 6379487
6 318.4 1326.4 1326.7 4157115 1661.7 1672.5 1672.7 6976654
7 263.7 1239.4 1239.6 4119267 1308.3 1319.1 1319.3 6527171
8 244.9 964.5 964.7 4186511 1156.1 1ib0.0 1167.2 6317484
9 214.8 913.2 913.4 4167859 1088.8 1099.6 1099.9 6603089
10 181.7 863.9 864.2 4100894 743.6 754.4 754.6 5357216
11 176.9 844.8 845.9 4178387 736.7 747.4 747.7 5640400
12 159.9 825.3 825.6 4159656 701.0 711.8 712.1 5728083
13 142.8 794.3 794.6 4120399 670.3 681.1 681.3 5864526
14 126.0 763.7 763.9 4071034 641.6 652.4 652.6 5902102

15 112.9 749.7 750.0 4026857 636.1 646.9 647.2 6105426
16 109.0 486.9 487.1 4056131 633.2 644.0 644.3 6352589

17 108.2 485.7 486.0 4113402 613.4 624.2 624.5 6364104
18 95.9 472.6 472.8 4042812 612.3 623.1 623.4 6595488
19 91.9 468.2 468.4 4054668 268.5 279.3 279.6 3850921
20 91.1 467.3 467.6 4100710 255.8 267.2 267.5 3755432
21 91.1 466.4 466.7 4155120 255.2 266.6 266.9 3834753
22 91.1 453.2 453.5 4209410 251.0 262.5 262.8 3858573
23 74.1 434.1 434.3 4025482 233.8 245.3 245.5 3643287
24 74.1 434.0 434.2 4069320 233.3 244.8 245.1 3705944
25 74.1 434.3 434.6 4113191 233.3 244.8 245.1 3774625
26 74.0 434.6 434.8 4156950 233.0 244.5 244.7 3836593
27 73.2 432.7 433.0 4188464 231.5 243.1 243.3 3879565
28 57.3 418.1 418.4 3976902 230.5 242.0 242.3 3926341
29 57.3 418.0 418.3 4011165 229.2 240.7 241.0 3966820
30 45.0 405.7 I.9 3820110 229.3 240.9 241.1 4034643
31 41.0 401.1 401.3 3772995 229.4 241.0 241.1 4100518

BCT: Time when best cover was initially found.
ST: Search time.
TT: Total program execution time.
EN: Number of expanded nodes
Time is in seconds.
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Table D.6 (Continued). Fine Grain Parallel SCP Statistics

70.70.08.U
Searchers BCT ST TT EN

1 1870.5 4130.4 4130.5 3877454
2 687.6 2232.5 2232.6 3548905
3 325.0 1777.7 1777.8 3282476
4 188.6 1606.3 1606.4 3136370
5 100.2 1509.8 1509.9 2966949
6 96.6 1478.6 1478.7 3021477
7 72.5 1465.5 1465.7 2954274

8 70.7 1455.9 1456.1 2977564

9 63.2 1446.7 1446.9 2961082
10 61.9 1443.1 1443.3 2967481
11 59.4 1441.1 1441.2 2966104
12 59.2 1440.2 1440.4 2973345
13 58.9 1444.8 1445.0 2976463
14 58.8 1444.5 1444.6 2981229
15 58.4 1444.2 1444.4 2982121
16 58.4 1444.2 1444.4 2985078
17 58.5 1443.2 1443.3 2987752
18 58.2 1439.5 1439.7 2988756
19 58.2 1439.1 1439.3 2990224
20 58.4 1440.2 1440.3 2990322
21 58.4 1444.2 1444.3 2990671
22 58.3 1442.6 1442.8 2990173
23 58.4 1442.8 1442.9 2990728
24 58.2 1443.9 1444.1 2990112
25 58.2 1444.0 1444.1 2990104
26 58.3 1439.1 1439.3 2990287
27 58.3 1439.6 1439.8 2990097
28 58.4 1439.3 1439.4 2990611
29 58.3 1442.9 1443.1 2990067
30 58.3 1439.1 1439.3 2990169
31 58.3 1439.1 1439.3 2990190

BCT: Time when best cover was initially found.
ST: Search time.
TT: Total program execution time.

EN: Number of expanded nodes
Time is in seconds.
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Table D.7. Dynamic Load Balanced Parallel SCP Statistics

100.100.28.U 100.100.27.U
Searchers BCT ST TT EN BCT ST TT EN

1 207.2 9254.5 9254.7 3687497 7388.3 14712.9 14713.1 5935841
2 97.0 4619.1 4619.3 3682307 3692.6 7352.6 7352.8 5936581
3 78.2 3095.8 3096.0 3698483 2441.6 4886.1 4886.3 5911116

4 43.5 2346.1 2346.3 3731342 1848.7 3684.2 3684.5 5934329
5 37.9 1870.6 1870.9 3719722 1296.4 2818.4 2818.7 5657347
6 33.7 1545.0 1545.3 3685644 1236.7 2471.5 2471.8 5963108
7 32.0 1356.8 1357.0 3771108 743.7 1854.5 1854.8 5201384
8 29.3 1251.3 1251.6 3952961 693.4 1633.0 1633.3 5237539
9 28.0 1050.5 1050.8 3738090 680.9 1507.1 1507.3 5439645

10 26.6 971.2 971.5 3841882 647.4 1389.8 1390.0 5569151
11 25.2 895.4 895.7 3893483 639.1 1354.3 1354.6 5962094
12 23.9 824.3 824.6 3904916 622.4 1271.5 1271.7 6107964
13 23.8 782.8 783.1 3999442 142.4 793.4 793.6 4036731
14 23.7 741.0 741.2 4061461 141.5 773.4 773.6 4201892
15 22.4 711.7 711.9 4155221 139.4 768.1 768.4 4394147

16 22.3 711.1 711.4 4332438 114.1 604.7 605.0 3798807

17 22.2 581.1 581.3 3895273 82.3 421.1 421.3 3824427
18 22.2 557.1 557.4 3931887 81.9 405.4 405.6 3818457
19 21.1 516.9 517.2 3814800 67.9 386.5 386.8 3863002
20 19.8 517.2 517.5 3992884 67.7 384 384.9 4019697
21 19.8 506.3 506.6 4095028 67.6 380.0 380.3 4173330
22 18.5 509.6 509.8 4324991 67.6 377.4 377.7 4347725
23 18.4 504.8 505.1 4446322 67.4 381.1 381.4 4546100
24 18.4 497.3 497.6 4569803 63.0 376.2 376.5 4674789
25 18.4 489.5 489.7 4676441 62.9 375.6 375.9 4876086
26 18.3 498.1 498.4 4979991 62.9 365.3 365.6 4917570

I27 18.3 5 03.4 503.6 5154768 62.9 364.5 364.8 5107966

28 18.3 473.1 473.4 5040636 62.8 370.6 370.9 5348620
29 18.3 467.4 467.7 5125823 62.7 368.5 368.7 5441404
30 17.1 457.2 457.4 5152413 61.9 358.5 358.8 5531284
31 17.1 460.2 460.4 5377656 61.8 369.1 369.4 5815763

BCT: Time when best cover was initially found.
ST: Search time.
TT: Total program execution time.
EN: Number of expanded nodes
Time is in seconds.
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I Table D.7 (Continued). Dynamic Load Balanced Parallel SCP Statistics

100.100.26.U 75.125.25.U
Searchers BCT ST TT EN BCT ST TT EN

1 2029.0 7537.8 7538.0 4199069 9783.7 9794.7 9795.0 6939581

2 1010.7 3766.0 3766.2 4194865 4730.5 4736.8 4737.1 6701992
3 676.5 2515.7 2516.0 4198599 3249.6 3254.6 3254.9 6917840
4 498.2 1878.3 1878.5 4179196 2304.4 2311.2 2311.5 6543207

5 396.2 1530.8 1531.1 4244902 1791.8 1800.9 1801.1 6375185

6 326.4 1249.3 1249.5 4158144 1633.1 1638.3 1638.6 6949448
7 270.3 1094.1 1094.3 4237436 1305.0 1313.4 1313.6 6509844
8 251.1 950.3 950.5 4216079 1109.4 1115.0 1115.3 6291918
9 220.2 843.9 844.1 4194949 1045.8 1051.2 1051.4 6656920
10 186.2 764.7 765.0 4220185 755.8 765.3 765.6 5387560

11 181.3 717.5 717.8 4348090 698.0 707.4 707.7 548026112 163.9 689.9 690.2 4537361 707.6 716.0 716.2 6024297

13 146.4 639.9 640.1 4535682 646.3 653.6 653.8 5967879
14 129.2 580.6 580.9 4410621 579.6 587.6 588.0 5771671
15 115.8 556.6 556.8 4453494 598.7 605.1 605.3 6349913
16 111.7 478.4 478.6 4204050 508.6 582.4 582.7 6491078
17 110.9 454.7 455.0 4183504 554.0 560.8 561.1 6634078
18 98.3 418.6 418.9 4116641 535.2 540.0 540.3 6776411
19 94.2 424.9 425.1 4320563 276.3 287.3 287.3 3851439
20 93.4 409.4 409.6 4449380 263.6 274.5 274.8 3851907
21 93.4 406.2 406.4 4551921 262.1 272.1 272.4 4013897

22 93.4 406.0 406.2 4812692 258.4 268.9 269.2 4140161
23 75.9 373.6 373.9 4563806 240.3 250.9 251.2 4015712

24 75.9 370.8 371.1 4709982 199.3 211.4 211.7 3531648
25 75.9 367.3 367.6 4867595 239.7 250.2 250.5 4328303
26 75.9 370.1 370.3 5071190 239.4 250.7 251.0 4491268

27 75.1 359.5 359.8 5165696 238.6 249.7 249.9 4634800

28 58.7 345.7 346.0 5027405 237.5 248.7 248.9 4800440
29 58.7 353.8 354.0 5336114 220.1 232.1 232.3 4634845

30 46.1 340.9 341.1 5240828 236.1 246.7 247.0 5087735

31 42.1 344.6 344.8 5467881 236.0 246.6 246.9 5215345
BCT: Time when best cover was initially found.
ST: Search time.

TT: Total program execution time.
EN: Number of expanded nodes
Time is in seconds.
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Table D.7 (Continued). Dynamic Load Balanced Parallel SCP Statistics

70.70.08.U
Searchers BCT ST TT EN

1 1909.5 4214.1 4214.3 3877454
2 702.1 1932.7 1932.8 3549111
3 331.7 1195.2 1195.4 3282334

4 192.8 867.3 867.5 3169786
5 102.5 664.9 665.1 3029919
6 98.8 565.2 565.4 3086566
7 74.1 482.6 482.7 3067194
8 72.3 429.0 429.2 3116936
9 64.8 403.0 403.2 3280278

10 63.4 350.5 350.7 3150803
11 60.6 329.4 329.6 3258935

12 60.6 318.0 318.2 3412913
13 60.0 296.6 296.8 3458709
14 60.0 286.4 286.6 3582617
15 60.0 295.0 295.1 3944612

16 59.8 274.9 275.1 3941925
17 59.9 252.2 252.4 3802190
18 59.6 279.9 280.0 4429549
19 59.6 251.1 251.3 4103877
20 59.7 246.2 246.4 4252316
21 59.7 265.7 265.9 4799182

22 59.8 285.8 286.0 5374693
23 59.7 265.0 265.1 5041567
24 59.8 254.5 254.7 5101067
25 59.8 285.9 286.1 5937413
26 59.7 256.6 256.8 5558216
27 59.7 267.1 267.3 5953949
28 59.7 228.9 229.1 5235085
29 59.7 238.2 238.4 5591061
30 59.7 254.3 254.5 6408799
31 59.7 244.8 244.9 6199314

BCT: Time when best cover was initially found.
ST: Search time.
TT: Total program execution time.
EN: Number of expanded nodes
Time is in seconds.
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Table D.8. Tabulated Speedup Data

100.100.28.U 100.100.27.U
Searchers Coarse Grain Fine Grain Load Balance Coarse Grain Fine Grain Load Balance

1 0.4 1.0 1.0 0.5 1.0 0.7
2 0.7 2.0 1.5 1.2 2.1 1.5
3 1.0 3.0 2.2 1.7 3.0 2.2
4 1.4 3.7 3.0 2.1 4.1 3.0
5 1.8 4.7 3.7 2.4 4.9 3.9
6 2.0 5.9 4.5 3.0 5.8 4.4
7 2.2 6.2 5.1 3.0 7.2 5.9
8 2.5 6.4 5.5 3.3 9.2 6.7
9 3.0 8.7 6.6 4.5 9.4 7.3

10 3.1 8.9 7.1 4.5 9.7 7.9
11 3.5 9.2 7.7 4.5 9.8 8.1
12 3.1 9.4 8.4 6.1 10.1 8.6
13 3.6 9.4 8.8 6.1 14.4 13.8
14 4.4 9.7 9.3 6.1 14.5 14.2
15 4.4 9.8 9.7 6.2 14.5 14.2

16 4.4 15.6 9.7 6.3 24.2 18.1
17 4.6 15.6 11.9 7.6 24.2 26.0
18 5.8 16.2 12.4 7.6 24.2 27.0
19 5.8 16.2 13.4 7.6 25.0 28.3

20 5.8 16.2 13.4 7.6 25.0 28.5
21 5.8 16.3 13.7 7.8 25.0 28.8
22 6.0 16.3 13.6 7.8 25.0 29.0
23 5.9 16.3 13.7 7.8 25.0 28.7
24 5.9 16.3 13.9 7.8 25.3 29.1
25 6.2 16.3 14.1 7.9 25.3 29.1
26 6.2 16.3 13.9 10.4 25.3 30.0
27 6.2 16.3 13.8 10.3 26.0 30.0
28 8.7 16.3 14.6 10.3 26.0 29.5
29 6.2 16.3 14.8 10.3 26.0 29.7
30 6.2 16.3 15.1 10.3 26.3 30.5

31 6.2 16.3 15.0 10.3 26.3 29.6

I
I
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Table D.8 (Continued). Tabulated Speedup Data

100.100.26.U 75.125.25.U
Searchers Coarse Grain Fine Grain Load Balance Coarse Grain Fine Grain Load Balance

1 0.7 0.8 0.7 1.2 1.0 1.0
2 1.1 1.5 1.5 2.6 2.0 2.0
3 3.2 2.1 2.2 3.4 2.9 2.9
4 4.2 3.0 3.0 4.8 4.1 4.1
5 4.5 3.3 3.6 6.0 5.3 5.2
6 6.1 4.2 4.5 9.5 5.6 5.7
7 6.2 4.5 5.1 14.3 7.1 7.1
8 6.4 5.8 5.9 14.8 8.0 8.4
9 6.7 6.1 6.6 16.0 8.5 8.9

10 7.4 6.5 7.3 14.9 12.4 12.2
11 7.7 6.6 7.8 15.4 12.5 13.2
12 12.6 6.8 8.1 15.3 13.2 13.1
13 12.6 7.0 8.7 16.5 13.7 14.3
14 13.0 7.3 9.6 59.8 14.4 16.0
15 13.1 7.4 10.0 59.8 14.5 15.5
16 13.6 11.5 11.7 60.0 14.5 16.1I17 13.6 11.5 12.3 60.2 15.0 16.7

18 13.6 11.8 13.3 60.2 15.0 17.3
19 14.1 11.9 13.1 60.2 33.5 32.6
20 14.1 11.9 13.6 60.6 35.0 34.1
21 14.1 12.0 13.7 60.6 35.1 34.4
22 14.1 12.3 13.7 60.4 35.7 34.8
23 14.2 12.9 14.9 60.8 38.2 37.3
24 14.7 12.9 15.0 60.8 38.3 44.3
25 14.7 12.8 15.2 60.8 38.3 37.4
26 14.7 12.8 15.1 60.8 38.3 37.3
27 14.7 12.9 15.5 61.0 38.5 37.5
28 14.7 12.3 16.1 61.1 38.7 37.6
29 14.7 12.3 15.8 61.1 38.9 40.3
30 14.7 13.3 16.4 61.0 38.9 38.0
31 14.7 13.8 16.2 61.0 38.9 38.0
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Table D.8 (Continued). Tabulated Speedup Data

_ _ _ 70.70.08.U
Searchers Coarse Grain Fine Grain Load Balance

1 1.2 1.1 1.1
2 2.7 2.0 2.3
3 3.8 2.5 3.7

4 5.1 2.8 5.1
5.7 2.9 6.767.0 3.0 7.9

7 8.7 3.0 9.2
8 10.6 3.1 10.4
9 11.0 3.1 11.0

10 12.0 3.1 12.7
11 12.0 3.1 13.5
12 12.6 3.1 14.0
13 13.6 3.1 15.0
14 13.4 3.1 15.5
15 13.6 3.1 15.1
16 17.3 3.1 16.2

I 17 15.7 3.1 17.6
18 15.7 3.1 15.9

19 15.4 3.1 17.7
20 15.4 3.1 18.0
21 15.8 3.1 16.7
22 15.8 3.1 15.5
23 15.5 3.1 16.8
24 15.4 3.1 17.5
25 15.5 3.1 15.5
26 15.7 3.1 17.3

27 15.5 3.1 16.6
28 15.4 3.1 19.4
29 15.5 3.1 18.7
30 15.7 3.1 17.5
31 15.7 3.1 18.2
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3 Appendix E. NP-Complete Problems

E.1 Introduction

I Many of the real-world problems mentioned in Chapter I are NP-complete and may

be solved using optimal search techniques developed to solve the following NP-complete

problems (4, 25):

Assignment Problem

Hamiltonian Circuit Problem

Traveling Salesman Problem

0/1 Knapsack Problem

Set Covering Problem (SCP)

3 The purpose of this appendix is to describe the above NP-complete problems with

the proofs of their NP-completeness left to Aho (4). The first four problems are briefly

described in Sections E.2, E.3, E.4, and E.5. Since this research explores the parallelization

of the SCP, a detailed explanation of the SCP and its component parts is presented in

* Section E.6.

3 E.2 Assignment Problem

The general assignment problem is the problem of assigning w resources to t tasks

3 subject to a set of constraint(s). An effective implementation of this problem finds an

optimal assignment, but depending on the values of w and t, this problem may not be

3 NP-complete. For example, w3 time is required to solve an assignment problem where

w = t. If, however, w < t, the problem is NP-complete requiring O(wt) time to compute

3 an optimal solution in the worst case (19). The notation, O(), is used to indicate "order-

of". This order-of refers to an upper, lower, or exact-bound on the number of calculations

3 required to solve the problem. In other words, it refers to the efficiency of the problem's

algorithm. In many cases, efficiency is used to indicated time and space requirements. In

3 this document, roughly all order-of or complexity analysis assumes the worst-case or upper-

bound on the number of calculations and the time required to compute those calculations.

I F_-1
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The order-of analysis for space requirements is only included where relevant. Figure E.1

shows a complete assignment tree for t = 3 and w = 2. One assignment from this tree

might be T1 assigned to Wi, T2 assigned to W1, and T3 assigned to W2 for a total cost

of C2. Notice that every combination of w and t is represented. The optimal assignment

is that combination which results in the lowest cost c.

Tasks

T1

T3 W1 W W1 W W1 W W1 W

C1 C2 C3 C4 C5 C6 C7 C8

Costs

Figure E.1. Tree Representing w Weapons Assigned to t Targets

E.3 Hamiltonian Circuit Problem

Given a directed graph, Figure E.2, composed of vertices and arcs, a circuit in this

graph is a directed path with the same starting and ending vertex. The Hamiltonian

Circuit Problem is the problem of finding a circuit in the graph such that no vertex is used

more than once (an elementary circuit) and the circuit encompasses all vertices (17:6). In

Figure E.2, the Hamiltonian circuits are {a --+ b --+ c -- d --* a}, {a --* b -+ d --* c --+ a),

and {a --+ -- b -+ d -- a}.

E.4 Traveling Salesman Problem

Now, let costs be associated with the arcs of the directed graph such that the cost of

the circuit is the sum of the arcs comprising the circuit. The traveling salesman problem
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I8 (3

Figure E.2. Directed Graph

(TSP) is the problem of finding the minimum cost Hamiltonian circuit (25:231). In Fig-

ure E.2, the solution to the TSP is given by the Hamiltonian circuit {a -+ c --+ b --* d -* a}

with a cost of 20.

E.5 0/1 Knapsack Problem

"Given n positive weights wi, n positive profits Pi, and a positive number M which

is the knapsack capacity, this problem calls for choosing a subset of the weights such that

E w ixi 5 M and E pixi is maximized
_~~ 1<i<n

The x's constitute a zero-one valued vector" (29:350). In other words, if object i is placed

in the knapsack, a profit of pi is earned. The objective of the knapsack problem is to fill

the knapsack such that the profit is maximized.

E. 6 Set Covering Problem

The set covering problem (SCP) is one of a large class of NP-complete problems (see

Aho (4:392) for a proof of the SCP's NP-completeness). It was extensively studied in the

late 1960's and early 1970's in connection with operational research problems and many

articles are available from this time period covering search, reduction, and applications (18,

7, 52, 2, 43). The following sections present a syntactic definition of the SCP, three
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example applications, the search technique to be used to find the optimal cover, four

i reduction techniques, a dominance test, and a lower bound test.

E.6.1 Description The SCP may be defined by the following definition (17:39):

I Given a set R = {rl, r2,..., r..} and a family f = {S 1 , S 2 ,. . ., SN} of sets
such that Sj C R, any subfamily of C = {SjiS 2 ,..., Sjk} such that

SU Sj, R (E.1)

I is called a set covering of R.
Given a 0-1 matrix,

Minimize: z = N:cjvj

N j=S (E.2)

Subject to: Ztijvj,i=1,2,3,...,m

In a less syntactic definition, minimize the cost such that all the elements of R are
covered by at least one set from £ (17:39). The objective of the SCP is to cover all the

I vertices in a graph with the minimum cost set of arcs or to find the set of arcs such that

all vertices have at least one arc and the set of arcs have a cost lower than any other set of

arcs which also cover the vertices. Another way to view the problem is to consider an 0-1

matrix such as the one shown in Figure 2.1 and repeated in this section. In this matrix, the

objective is to cover all the rows (vertices) with some subset of the columns (arcs or sets)

such that the total cost of the subset of columns is less than any other covering subset.

I As in the previous sections on search techniques, Figure 2.1 is used to illustrate the

concepts presented in this section. In Figure 2.1, the sets {0, 1, 2, 3, 4}, {3, 4, 5, 6}, and

{0, 3, 4} each cover all the vertices with costs 27, 19, and 15 respectively. These sets are

not all the covering sets, just a representative sample. The solution to this SCP is the set

I0, 3, 4} which has a cost of 15. Any other combination of sets which cover the vertices

have a cost greater than the cost of this set. Before proceeding with a discussion of the

search technique, the next section presents three example applications of the SCP.

I
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Sets
0 1 2 3 4 5 6 7

0 1 1 1 0 0 1 0 1
S1 1 0 1 0 0 1 0 1

Vertices 2 0 0 0 1 0 0 0 03 0 1 0 0 1 0 1 1
S4 0 0 0 0 1 1 1 0

5 1 1 0 0 0 0 1 0
4 7 5 8 3 2 6 5

Costs
Figure 2.1. 0-1 Matrix For a Set Covering Problem (17:54)I

E.6.2 SCP Applications The SCP has application in a number of different fields.

For example, airline and assembly line scheduling, design of computer systems, railroad-

crew scheduling, and political districting are all types of problems which can be formulated

as an SCP (17:591) (56:94) (7:1152). Furthermore, since the SCP is an NP-complete

problem, it can be used to solve other NP-complete problems such as the assignment and

graph coloring problems. The key to applying the SCP to any of these problems is to

identify the items that must be covered by some subset of another list of items. Once

the two lists of items are identified, they must be formulated as a 0-1 matrix with the

items to be covered as the rows and the covering items as the columns. Additionally, the

covering items must have some associated cost to identify their relative importance. The

intent of these examples is not to argue that the SCP should be used to solve these types

of problems. They merely illustrate the general applicability of the SCP to actual and

NP-complete problems.

U E.6.2.1 Selection of Interpreters Associate some semantics to the rows and

columns of Figure 2.1 as shown in Figure E.3.

Let the rows represent a list of languages which are required to be interpreted and

let the columns represent perspective interpreters. A '1' in any row/column means that

the perspective interpreter can speak that language. The salary for each interpreter is

represented at the bottom of the matrix. The objective then is to choose a subset of the

interpreters such that all the languages are spoken by at least one person and that the

I
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Applicants
A B C D E F G H

French 1 1 1 0 0 1 0 1
German 1 0 1 0 0 1 0 1

Languages Chinese 0 0 0 1 0 0 0 0
Spanish 0 1 0 0 1 0 1 1

Italian 0 0 0 0 1 1 1 0
English 1 1 0 0 0 0 1 0

4 7 5 8 3 2 6 5

Costs

Figure E.3. 0-1 Matrix for the Selection of InterpretersI
total salary of the interpreters is minimal.

It was previously stated that the cover for this matrix is {A, D, E} for a cost of 15.

Based on this cover, interpreters A, D, and E can speak all the languages required to be

spoken for the minimum salary (17:47,54).

E.6.2.2 Assignment Problem The assignment problem is also solvable as an

SCP problem. Let T targets be the items to be covered and let W weapons be the covering

items. List the targets as the rows and, for each weapon, construct columns corresponding

to targets the weapon can attack. Assign a cost to each column based on the cost to assign

that particular weapon to the list of targets. A low cost for a weapon to cover a list of

targets corresponds to a high priority assignment. Figure E.4 is an example of the weapon

assignment 0-1 matrix. The resulting assignment covers all targets with some combination

of weapons. In this example, the matrix must be dynamic since targets and weapons are

destroyed in real-time. Thus, the SCP must be executed after each iteration of weapon

firing to constantly obtain new assignments.

E.6.2.3 Graph Coloring Problem The graph coloring problem is another NP-

complete problem which is easily solvable as an SCP. The objective in a graph coloring

problem is to color the vertices of a graph such that no two adjacent vertices are the same

color. A good illustration is a map of the United States. The individual states of the map

must be colored so that each state is identifiable. The states are represented as vertices of a

I
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Weapons
1 2 3 4 3 2 4 1 2 1 4 4 3 2 1

T, 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1
T2  1 0 0 0 1 1 0 0 1 1 0 0 0 0 0

Targets T3 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1
T4  0 0 1 1 0 0 0 0 1 1 1 1 1 0 0
Ts 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1

T6 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1
1 5 8 4 2 9 6 8 3 1 1 2 4 3 4

* Costs

Figure E.4. Assignment Problem 0-1 MatrixI
graph and the borders between states are links between the vertices. Hence, any two states

that share the same border are adjacent and must be different colors. The general process

for solving a graph coloring problem with the SCP is to build an adjacency matrix of the

items to be colored, compute the maximal independent sets (MISs) from the adjacency

matrix, construct a 0-1 matrix containing the items as rows and the MISs as columns, and

then cover the items with the MISs.

An adjacency matrix is a 0-1 matrix with the vertices of the graph represented as

rows and columns. If a row vertex and a column vertex are adjacent (i.e., there is a path

of length one between them) then a '1' is entered in the matrix. A '0' is entered in all

row/column pairs which are not adjacent. A set is maximally independent if: (1) given a set

of vertices, v, of a graph, no two vertices of v are adjacent and (2) no other set of vertices,

A, contains v. A graph may contain numerous MISs and the cardinality of each MIS may

be different. An algorithm for generating all MISs is given by Christofides (17:31-32).

Consider the undirected graph of Figure E.5. The adjacency matrix for this graph is

represented in Figure E.6. The six vertices are placed on the rows and columns and a '1'

is inserted in every row/column corresponding to adjacent vertices.

The maximal independent sets are generated and placed in a 0-1 matrix as in Fig-

ure E.7. The rows now represent the vertices in the graph and the columns are the maximal

independent sets. Costs must be associated to the columns because the SCP finds a mini-

mum cost cover. All the columns are equally important; therefore, each column gets a cost

I E- 7
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U Figure E.5. Undirected Graph

I
a b c d e fia 0 1 0 1 1 0

b 1 0 0 1 0 0

c 0 0 0 1 0 1
d 1l1 1 0 0 0
e 1 0 0 0 0 0
fe 0 0 1 0 0 0

i Figure E.6. Adjacency Matrix for Undirected Graph of Figure E.5

I
St S2 S3 S 4 S 5

a 1 1 0 0 0
b 0 0 1 1 0c 1 0 1 0 0

id 0 0 0 0 1

e 0 0 1 1 1

f 0 1 0 1 1I 1 1 1 1 1

Costs

Figure E.7. Maximal Independent Sets 0-1 Matrix

I
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of one. A solution to this coloring problem is now found by covering the rows with the

I minimum number of columns. One solution to this covering problem is the sets {S 1 , S4, Ss

for a cost of three. This solution is interpreted to mean that three colors are required to

color the graph and that the following sets of vertices can be colored the same color: {a,c},

{b,e,f}, and {d}. Notice that S4 and S5 both contain {e,f}. This means that {e,f} can be

I either color (17:68-69).

3 E.6.2.4 Other NP-complete Problems In general, any NP-complete problem

can be solved using the SCP since all NP-complete problems are transformable to each

other in polynomial time (4:373). However, many transformations may be required to

massage the problem until it is solvable as an SCP (4:385). Hence, it is not necessarily3 efficient to solve other NP-complete problems in this manner. Even so, the data and control

structures necessary to search the state space are similar.

U E.6.3 Search Methodology The optimal solution to the SCP involves a search forg the least (or greatest) cost set of columns which cover all rows. Since it is a search, all

search techniques presented in Section 2.4 apply. The main stipulation or restriction on the

3 SCP search is that the entire search space must be checked either explicitly or implicitly to

ensure the optimal solution is obtained. Rather than use the simple depth-first or breadth-

3 first search, a branch-and-bound search is more efficient for reasons already presented in

Section 2.4.6. At each stage of the search, the selection function chooses a column based3 on a depth-first expansion. The branching procedure ensures that the column does not

currently belong to the cover. If the column has already been added, the search backtracks3 and the next column is chosen. The selection and branching procedures iterate until a new

column is added to the current cover. The elimination procedure has two functions: 1) it3 compares a complete cover against the previously retained cover and keeps the better, 2)

it performs dominance testing and lower bound computation to eliminate those portions3 of the search tree which can not possibly lead to a better solution. The termination test

tracks the progression of the search and terminates when all covers are checked. Note3 that it is not necessary to expand all covers explicitly since the elimination procedure may

eliminate entire subbranches of the search tree. Therefore, the termination test must track

I
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the algorithm's current position in the search tree.

E.6.4 Reductions and Preconditioning Before the branch-and-bound search is exe-

cuted, reductions and preconditioning of the search space are possible. Four polynomial-

time reduction methods which potentially reduce the input problem's dimensions are out-

3 lined (17:40):

1 1. Reduction #1: The input matrix is examined for a row which has no cover. If such

a row exists, then the problem is unsolvable and the search is complete.

3 2. Reduction #2: If there exists a row which is covered by only one column, both the

column and the rows covered by the column are removed from the input matrix and

3 the column is added to the final solution. For example, let Figure 2.1 on page E-5 be

the input matrix for an SCP. Notice that row 2 is only covered by column 3. Hence,3 any solution to this problem must contain column 3. This column can be removed

from the matrix along with any other rows that it covers. Figure E.8 shows the new3 input matrix to the SCP. When the search is complete, column 3 and its cost are

added to the solution.

I Sets
0 1 2 4 5 6 7

I 0 1 1 1 0 1 0 1
1 1 0 1 0 1 0 1

Vertices 3 0 1 0 1 0 1 1S4 0 0 0 1 1 1 0

5 1 1 0 0 0 1 04 7 5 3 2 6 5

Costs

Figure E.8. Application of a Reduction TechniqueI
3. Reduction #3: Any row which is dominated by another row in the matrix may be

removed. "Let Vi = {j I r, E Si}. Then, if 3p,q E {1,.. .,M} with Vp 9 V, rq

may be deleted from R, since any set that covers rp must also cover rq, i.e., rq is

dominated by rp" (17:40). Consider the two rows of the matrix in Figure E.9. Any

E-10I
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3 rowQ: 1 1 1 0 0 1 01

rowP: 1 0 1 0 0 1 0 1

3 Figure E.9. Example Rows for SCP Reduction #3

3 column chosen to cover row P must also cover row Q since row P is a subset of row

Q; therefore, row Q may be removed.

3 4. Reduction #4: Any column (set) which is dominated by another column (set) in the

matrix may be removed. "If, for some family of sets Z C £ we have U S, ; Sk and
Si EZ

cj !_ Ck for any Sk E C - Z, then Sk may be deleted from £ since it is dominated

3 by J Sj" (17:40). Consider the two columns in Figure E.10. Column Q is a subset
Si EC

P 001 1
3 00

11
1 1

0
1 1
0 O0

I 1 0]

1 1
Costs 5 6

3 Figure E.10. Example Columns for SCP Reduction #4

of P and has a greater cost. Since, column P covers the same rows as column Q and

has a lesser cost, it dominates column Q and column Q can be removed.

E.6.5 Search Table Construction The branch-and-bound search described in the

previous section requires a significant amount of bookkeeping. In fact, it could be argued

that all optimal search techniques are elaborate bookkeeping exercises (41). The branch-

1 and-bound algorithm must store the traversed states so they can be recalled during the

backtracking phase. Furthermore, it is desirable to choose only those sets which actually

E
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contribute to the solution. For instance, in Figure 2.1, suppose the search algorithm has

chosen sets {0, 1} to cover rows {0, 1, 3, 5}. It is pointless to choose set {2} since it will

not cover any rows not already covered by sets {0, 1}. Therefore, the efficiency of the

search process is improved if there exists some method to choose the next set that covers

rows not already covered.

Christofides (17:41) suggests the construction of a table to assist in the bookkeeping

and selection of the next set. The table for the matrix of Figure 2.1 is shown in Figure E.11.

I Blocks

0 1 2 3 4 ]5
Columns

5 0 7 2 1 5 0 2 7 4 7 6 1 5 4 6 0 6 1 3
0 1 1 1 1 1

I1 1 1 1 1 0 1 1 1 1

Rows 3 0 0 1 0 1 0 0 0 1 1 1 1 1
4 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1

I 5 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 4 5 5 7 2 4 5 5 3 5 6 7 2 3 6 4 6 7H

I Costs

i Figure E.11. Table for Figure 2.1

I The algorithm to build the table defines a block for each vertex (row) of the matrix.

All sets (columns) covering a particular vertex are contained in the block for that vertex.

I A search algorithm which selects one set from each block is guaranteed to cover all the

vertices. If, in addition to just selecting sets from the blocks, the search algorithm keeps

I track of the vertices already covered, the algorithm could skip blocks which correspond to

vertices already covered. The search progresses from left to right in the table continually

I selecting and marking one set from each block as necessary. If the algorithm must back-

track, it ro~gresses from right to left until it has found a block that can be further expanded.

I Notice, also, that the sets within each block are ordered in ascending order. This ordering,

in most cases, decreases the number of expanded nodes in the search tree. The worst case,

E- 12
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I
of coarse, requires that all sets be checked before the optimal solution is found. As stated,I Bthe purpose of the table is to assist the search in the bookkeeping and selection of the next

set. Given the table of Figure E.11, a search is conducted. Figure E.12 illustrates the

number of nodes expanded in the search tree when the only criteria for backtracking

is the existence of a cover. It is included to illustrate the dramatic affect of applying

the previously described reductions and dominance test. The matrix resulting from the

application of the reductions is shown in Figure E.13 and the search of this reduced matrix

is shown in Figure E.14. Clearly, the reductions can dramatically decrease the amount of

time required to search the matrix. Note that this example is ideal and that not all input

i matrices are reducible.

The next two sections describe the dominance and lower-bound tests. Both tests are

3 designed to limit the number of nodes expanded in the search tree. An example search

tree of the nonreduced matrix is given for the dominance test.

I E.6.6 Dominance Testing Christofides describes two elimination procedures which

potentially improve the efficiency of the search. The first procedure is a dominance test.

Let the state of the SCP search be defined by the tuple {E, B, z, b, i} where:

i E represents the set of rows currently covered in the search,

* B represent the set of columns which cover the rows in E,

I * B represent the set of covering columns for the best solution obtained thus far, and

i * z and i represent the cost of the covering columns contained in B and b, respectively.

As the search progresses, duplicate states are likely to occur in the search tree. A dominance

test for the SCP saves limited information about the current state and uses it to compare

to future states. Assume the algorithm selects column Sk from the table for inclusion in the|3
cover and that previous states were saved. If E u S C Eprevious and z + c Zprevious

the algorithm can immediately backtrack since the addition of S can not result in a better

3 cover than already obtained (17:44-45). Figure E.15 is a search of the original, unreduced

matrix using a dominance test.

I E- 13
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Sets
0 1 4 5 6 

1 1 0 0 1 0 1

Vertices 3 0 1 1 0 1 1
4 0 0 1 1 1 0
5 1 1 0 0 1 0

4 7 3 2 6 5

Costs

Figure E.13. Reduced 0-1 Matrix of Figure 2.1

IS

34 7 6 1

35 0 7

I)
0 06

3 must be added to each leaf.

Figure E.14. Full Search Tree of Reduced Matrix
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E.6.7 Lower Bound Computation Christofides' second elimination procedure is a

dynamic programming algorithm for the computation of a lower bound. "At some stage

of the search, given by B', E', z', and where block k is the next block to be considered, a

lower bound h on the minimum value of z, can be calculated and used to limit the tree

search" (17:44-45). The first step in the lower bound computation is to construct two

matrices, D and D', as shown in Figure E.16. Let M represent the number of rows to

be covered in the 0-1 SCP matrix and IE'I represent the number of rows already covered.

Consider the next row to be covered, rj, it can not be covered unless some column, Sj, is

chosen from block j of the table. For each rj, "construct a row for matrix D = [dqs] and

a row for a second matrix D' = [d's], where dqs is the number of elements in set Sq and

d'. is its cost. In addition, append an extra row, 0 say, to D and D' with do, = s for all

I s 0,1,..., M - IE'I and do, = s x min[c /IS I], the minimum being taken over all sets

SJ with ri E"' (17:45). Suppose the search of the 0-1 SCP matrix of Figure 2.1 has just

I started (M = 6 and IE'I = 0). Computation of the lower bound at this state is meaningless

since the lower bound will always be lower than the starting cost of infinity. Since this is

just an illustration, the D and D' matrices for M = 6 and IE[ = 0 are computed anyway

and shown in Figure E,16.

D _D'

033333302 4 5 5 7 oo
Rows 2 1 0 0 0 0 0 Rows 2 8 oo 00 oo oo oo

0 0 1 2 3 4 5 0 0 1 2 3 4 5

I Figure E.16. D and D' Matrices for Figure 2.1

I
Notice that the matrices have only three rows and are rectangular. The sets in

the first block of the table shown in Figure E.11 must be included since the first row is

uncovered. The sets in this first block just happen to cover all rows in the adjacency

matrix except for the last row. Hence, only the first and the last rows (Rows 0 and 2) are

added to D and D'. Some values of the rows may be undefined if that row's block does not

have M - IE'I columns. These undefined values are set to zero and infinity in D and D'

resp( ztively so that the resultant matrices are rectangular (17:45). The 'min' value used

I
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to generate the final row of the D' matrix is computed as follows:

[24557245535672364678
min[cj/jSjj] = min[ 3'i 3 3'3'12',2'l' 92'12'l'1 3',2'l'l' ,2')1, 1,-,1 ] 11

To compute the lower bound, the algorithm chooses one entry from each row of D
and D' so that the sum of the entries covers the uncovered rows and the corresponding

cost is minimum (17:45):

dqa M - IE' (E.3)
q=1

d'q8 (E.4)

q=1

Let gp(v) be the maximum number of elements that can be covered using
the first p rows of D (i.e., only p of the blocks in the subproblem), and whose
total cost does not exceed v. gp(v) can then be calculated iteratively as:

gp(v) =max [d,. + gp-I(v - dp.)], (E.5)

where go(v) is initialized to 0 for all v. The lowest value, v*, of v, for which
go(v) >_ M - IE'l is then the required lower bound, h. (17:45-46)

IThis concludes the detailed explanation of the SCP. Much of this information is
contained in Christofides (17:Chapter 3). Other methods are certainly available and manyU are explained in the literature (18, 7, 52, 27, 43).

IE. 7 Summary

This appendix presents examples of NP-complete problems and a detailed explana-
tion of the SCP. These examples are typical of NP-complete problems and serial solutions

*to these problems are well known and documented for specific cases as well as for the gen-
eral case (18, 4, 26, 17, 13, 29, 5). Furthermore, some work has been performed involving
parallel solutions (56, 48, 23, 46, 50, 25). Of the previous examples, emphasis is placed on
the SCP because of its general applicability to many different problems.

I
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to a distributed architecture. Finally, a complexity analysis of the
algorithm is performed.

The a priori reductions are divide-and-conquer algorithms; whereas, the
search for the optimal set cover is accomplished with a branch-and-bound
algorithm. The search utilizes a global best cost maintained at a central
location for distribution to all processors. Three methods of load
balancing are implemented and studied: coarse grain with static allocation
of the search space, fine grain with dynamic allocation, and dynamic load
balancing.

A serial and three SCP parallel algorithms were implemented and executed
on an iPSC/2 computer. Tests on large SCP problems indicate limited
speedup over the serial program with the coarse grain version using static
allocation and improved speedup with the fine grain version using dynamic
allocation. The use of dynamic load balancing further improves the speedup
and led to a super-linear speedup.
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